Ñ¸Î¬Íø

²é¿´: 1293|»Ø¸´: 4
´òÓ¡ ÉÏÒ»Ö÷Ìâ ÏÂÒ»Ö÷Ìâ

֪ʶ±íʾѧϰģÐÍ

[¸´ÖÆÁ´½Ó]
Í·Ïñ±»ÆÁ±Î
Ìø×ªµ½Ö¸¶¨Â¥²ã
1#
·¢±íÓÚ 2023-3-29 12:34:32 | Ö»¿´¸Ã×÷Õß »ØÌû½±Àø |µ¹Ðòä¯ÀÀ |ÔĶÁģʽ À´×Ô£º ºþÄÏ À´×Ô ºþÄÏ

ÂíÉÏ×¢²á£¬»ñÈ¡ÔĶÁ¾«»ªÄÚÈݼ°ÏÂÔØÈ¨ÏÞ

ÄúÐèÒª µÇ¼ ²Å¿ÉÒÔÏÂÔØ»ò²é¿´£¬Ã»ÓÐÕʺţ¿×¢²á

x
https://blog.csdn.net/Kaiyuan_sjtu/article/details/101841458

×î½üÇ廪µÄTHUNLPÕûÀíÁËPre-trained Languge Model (PLM)Ïà¹ØµÄ¹¤×÷£ºPLMpapers£¬·Ç³£È«Ã棬ÏëÒªÁ˽â×îÐÂNLP·¢Õ¹µÄͬѧ²»Òª´í¹ý¡£±¾À´ÕâÆªÊÇ´òËãдһдKnowledge Graph + BERTϵÁй¤×÷µÄ£¬µ«ÊÇ×î½üÓÐÔÚ×ö֪ʶͼÆ×µÄһЩ¶«Î÷ËùÒÔ¾ÍÏÈÕûÀíÒ»ÏÂ**֪ʶ±íʾѧϰ(knowledge representation learning)**µÄÏà¹ØÄ£ÐÍ·¢Õ¹£¬ÕâÑùÎÒÃÇ¿´ºóÃæµÄpaperÒ²»áµÃÐÄÓ¦ÊÖһЩ¡£

1. A glance at Knowledge Representation LearningWhat

Ê×ÏÈʲôÊDZíʾѧϰ£¿ÆäʵÎÒÃÇÔç¾ÍÔÚÆµ·±Ê¹ÓÃÁË£¬±ÈÈç´ÊÏòÁ¿embedding£¬ÕâÖÖ½«Ñо¿¶ÔÏóµÄÓïÒåÐÅÏ¢±íʾΪ³íÃܵÍάµÄʵֵÏòÁ¿µÄÐÎʽ¾Í½Ð±íʾѧϰ¡£ÓÐÁ˱íʾѧϰµÄ¶¨Ò壬ÄÇô֪ʶ±íʾѧϰ(KRL) ¾ÍÊÇÃæÏò֪ʶ¿âÖÐʵÌåºÍ¹ØÏµµÄ±íʾѧϰ£¬Í¨¹ý½«ÊµÌå»ò¹ØÏµÍ¶Ó°µ½µÍάÏòÁ¿¿Õ¼ä£¬Äܹ»ÊµÏÖ¶ÔʵÌåºÍ¹ØÏµµÄÓïÒåÐÅÏ¢µÄ±íʾ£¬¿ÉÒÔ¸ßЧµØ¼ÆËãʵÌå¡¢¹ØÏµ¼°ÆäÖ®¼äµÄ¸´ÔÓÓïÒ幨Áª¡£

Why

ÄÇôΪʲô»áð³ö֪ʶ±íÊ¾Ñ§Ï°ÄØ£¿

  • ÏÔÖøÌá¸ß¼ÆËãЧÂÊ¡£ ¼òµ¥µØ»ùÓÚͼËã·¨¼ÆËãʵÌå¼äµÄÓïÒåºÍÍÆÀí¹ØÏµ£¬Æä¼ÆË㸴ÔӶȸߡ¢¿ÉÀ©Õ¹ÐԲ¶ø±íʾѧϰµÃµ½µÄ·Ö²¼Ê½±íʾ£¬ÔòÄܹ»¸ßЧµØÊµÏÖÓïÒåÏàËÆ¶È¼ÆËãµÈ²Ù×÷¡£
  • ÓÐЧ»º½âÊý¾ÝÏ¡Êè¡£ Ò»·½Ã潫ÿ¸ö¶ÔÏóͶӰµ½µÍάµÄ³íÃÜÏòÁ¿¿Õ¼ä£»ÁíÒ»·½ÃæÔÚͶӰ¹ý³ÌÖÐÒ²¿ÉÒÔ½èÓÃ¸ßÆµ¶ÔÏóµÄÓïÒåÐÅÏ¢°ïÖúµÍƵ¶ÔÏóµÄÓïÒå±íʾ£¬²¶»ñ³¤Î²·Ö²¼¡£
  • ʵÏÖÒìÖÊÐÅÏ¢Èںϡ£ ½«²»Í¬À´Ô´µÄ¶ÔÏóͶӰµ½Í¬Ò»ÓïÒå¿Õ¼äÖУ¬¾ÍÄܹ»½¨Á¢Í³Ò»µÄ±íʾ¿Õ¼ä¡£
How

½ÓÏÂÈ¥»á½éÉÜ֪ʶ±íʾѧϰµÄÖ÷Òª·½·¨¼°Ç°ÑؽøÕ¹£¬ÕâÒ²ÊDZ¾ÏµÁв©ÎĵÄÖØÒª¡£Ê×Ïȸø³öÕûÌ嶨Ò壺

֪ʶ¿â±íʾΪ G=(E, R, S)£¬ÆäÖÐE = { e 1 , e 2 , ⋯   , e E } E={\{e_{1},e_{2}, \cdots, e_{E}\}}E={e1​,e2​,⋯,eE​}ÊÇʵÌ弯ºÏ£¬R = { r 1 , r 2 , ⋯   , r R } R=\left\{r_{1}, r_{2}, \cdots, r_{R}\right\}R={r1​,r2​,⋯,rR​}ÊǹØÏµ¼¯ºÏ£¬SÊÇÈýÔª×鼯ºÏ£¬±íʾΪ(h, r, t)

  • »ùÓÚ¾àÀëµÄÄ£ÐÍ
  • »ùÓÚ·­ÒëµÄÄ£ÐÍ
  • ÓïÒ寥ÅäÄ£ÐÍ
  • Èں϶àÔ´ÐÅÏ¢µÄÄ£ÐÍ
  • Ç°ÑØ½øÕ¹
paper list ref2. Distance-Based ModelsUM Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing(2012)

SELearning Structured Embeddings of Knowledge Bases(AAAI/2011)

ÔÚ±¾ÎÄÖУ¬×÷ÕßÖ¸³öĿǰÒÑÓеÄ֪ʶ¿â¶¼ÊÇ»ùÓÚ²»Í¬µÄ¿ò¼Ü£¬Òò´ËºÜÄѽ«ËüÃÇÕûºÏÓ¦Óõ½Ò»¸öеÄϵͳÖС£µ«ÊÇ֪ʶ¿âÖдæÔÚ´óÁ¿µÄ½á¹¹»¯ºÍ×éÖ¯»¯µÄÊý¾Ý£¬Èç¹ûÄܹ»³ä·ÖÀûÓÃÆðÀ´½«»á¶ÔAIÁìÓò·Ç³£ÓаïÖú¡£ÓÚÊÇ×÷ÕßÃÇÌá³öÒ»ÖÖÄ£Ðͽ«ÈκÎ֪ʶ¿âÖеÄʵÌåºÍ¹ØÏµÇ¶Èëµ½Ò»¸ö¸üÁé»îµÄÁ¬ÐøÏòÁ¿¿Õ¼ä¡£Ç¶Èë¿ÉÒÔÈÏΪÊÇÒ»¸öÉñ¾­ÍøÂ磬¸ÃÉñ¾­ÍøÂçµÄÌØÊâ½á¹¹ÔÊÐí½«Ô­Ê¼Êý¾Ý½á¹¹¼¯³Éµ½ËùѧϰµÄ±íʾÖС£¸ü׼ȷµØËµ£¬¿¼Âǵ½ÖªÊ¶¿âÊÇÓÉÒ»×éʵÌåºÍËüÃÇÖ®¼äµÄ¹ØÏµ¶¨ÒåµÄ£¬¸ÃÄ£ÐÍΪÿ¸öʵÌ壨¼´Ò»¸öµÍάÏòÁ¿£©Ñ§Ï°Ò»¸öǶÈë(embedding)£¬ÎªÃ¿¸ö¹ØÏµ£¨¼´¾ØÕó£©Ñ§Ï°Ò»¸öÔËËã·û(operator)¡£ÁíÍ⣬ÔÚµÍάembedding¿Õ¼äʹÓúËÃܶȹÀ¼Æ¿ÉÒÔ¹ÀÁ¿¿Õ¼äµÄ¸ÅÂÊÃܶȣ¬ÕâÑù¿ÉÒÔÁ¿»¯ÊµÌåÖ®¼äµÄ¹ØÏµ´æÔÚ¿ÉÄÜÐÔ¡£

½á¹¹±íʾ£¨Structured Embeddings£¬SE£©ÖÐÿ¸öʵÌåÓÃd ddάµÄÏòÁ¿±íʾ£¬ËùÓÐʵÌ屻ͶӰµ½Í¬Ò»¸öd ddάÏòÁ¿¿Õ¼äÖС£Í¬Ê±£¬SE»¹ÎªÃ¿¸ö¹ØÏµ¶¨ÒåÁËÁ½¸ö¾ØÕóM r , 1 , M r , 2 ¡Ê R d ¡Á d \boldsymbol{M}_{r, 1}, \boldsymbol{M}_{r, 2} \in \mathbb{R}^{d \times d}Mr,1​,Mr,2​¡ÊRd¡ÁdÓÃÓÚÈýÔª×éÖÐͷʵÌåºÍβʵÌåµÄͶӰ²Ù×÷¡£×îºóSEΪÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)¶¨ÒåÁËËðʧº¯Êý£ºf r ( h , t ) = ¨O M r , 1 l h − M r , 2 l t ¨O L 1 f_{r}(h, t)=\left|\boldsymbol{M}_{r, 1} \boldsymbol{l}_{h}-\boldsymbol{M}_{r, 2} \boldsymbol{l}_{t}\right|_{L_{1}}fr​(h,t)=¨OMr,1​lh​−Mr,2​lt​¨OL1​​¶ÔÓÚÉÏÊöËðʧº¯Êý£¬ÎÒÃÇ¿ÉÒÔÀí½âΪͨ¹ýÁ½¸ö¹ØÏµ¾ØÕó½«Í·Î²Á½¸öʵÌåͶӰµ½Í¬Ò»¹ØÏµ¿Õ¼äÖУ¬È»ºóÔڸÿռäÖмÆËãÁ½Í¶Ó°ÏòÁ¿µÄ¾àÀë¡£¶øÕâ¸ö¾àÀëÔò·´Ó³ÁËͷβʵÌåÖ®¼äÔÚÌØ¶¨¹ØÏµÏµÄÓïÒåÏàËÆ¶È£¬ËûÃǵľàÀëԽСÔò±íÃ÷Ô½ÓпÉÄÜ´æÔÚÕâÖÖ¹ØÏµ¡£

SEÄ£ÐÍҪѧϰµÄ²ÎÊýÊÇʵÌåÏòÁ¿¾ØÕóE EE ºÍÁ½¸ö¹ØÏµ¾ØÕóR l h s R^{lhs}Rlhs¡¢R r h s R^{rhs}Rrhs£¬ÏÂÃæÊÇÄ£Ð͵ÄѵÁ·¹ý³Ì£º

¿ÉÒÔ¿´³öSEÄ£ÐͶÔͷβÁ½¸öʵÌåʹÓò»Í¬µÄ¾ØÕó½øÐÐͶӰ£¬Ð­Í¬ÐԽϲÍùÍùÎÞ·¨¾«È·¿Ì»­Á½ÊµÌåÖ®¼äµÄÓïÒåÁªÏµ¡£


3. Trans-Based ModelsTransE Translating Embeddings for Modeling Multi-relational Data(NIPS2013)

TransEÊÇTransϵÁÐÄ£Ð͵ĿªÉ½Ö®×÷£¬Ò²ÊÇ֪ʶͼÆ×ÏòÁ¿±íʾµÄbaselineÄ£ÐÍ£¬ºóÃæ»á½éÉÜËüµÄºÜ¶à±äÌå¡£ÆäʵTransEµÄ˼ÏëºÜ¼òµ¥£¬ÎªÁ˽«ÊµÌåÓë¹ØÏµÇ¶Èëµ½µÍάµÄÏòÁ¿¿Õ¼ä£¬¶ÔÓÚ֪ʶ¿âÖеÄÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬ÈÏΪͷʵÌåµÄembedding¼ÓÉϹØÏµµÄembeddingÖ®ºóÓ¦¸ÃÊÇÓëβʵÌåµÄembedding·Ç³£½Ó½üµÄ¡£ÓÚÊÇ£¬¿ÉÒÔ½«¹ØÏµ¿´×öÊÇÁ½¸öʵÌåÖ®¼äµÄijÖÖÆ½ÒÆÏòÁ¿£¬ÈçÏÂͼ£º

°´ÕÕÉÏÃæµÄ˼·£¬¼´ÓÐÁËTransEÄ£Ð͵ÄËðʧº¯Êý£ºL = ¡Æ ( h , ℓ , t ) ¡Ê S ( h ¡ä , ℓ , t ¡ä ) ¡Ê S ( h , ℓ , t ) ¡ä [ ¦Ã + d ( h + ℓ , t ) − d ( h ¡ä + ℓ , t ¡ä ) ] + \mathcal{L}=\sum_{(h, \ell, t) \in S\left(h^{\prime}, \ell, t^{\prime}\right) \in S_{(h, \ell, t)}^{\prime}}\left[\gamma+d(\boldsymbol{h}+\ell, \boldsymbol{t})-d\left(\boldsymbol{h}^{\prime}+\ell, \boldsymbol{t}^{\prime}\right)\right]_{+}L=(h,ℓ,t)¡ÊS(h¡ä,ℓ,t¡ä)¡ÊS(h,ℓ,t)¡ä​¡Æ​[¦Ã+d(h+ℓ,t)−d(h¡ä+ℓ,t¡ä)]+​Õâ¸öËðʧº¯ÊýÊÇ´øÓÐnegative samplingºÍmargin-based lossµÄ

  • negative sampling£ºS ( h , ℓ , t ) ¡ä = { ( h ¡ä , ℓ , t ) ¨O h ¡ä ¡Ê E } ¡È { ( h , ℓ , t ¡ä ) ¨O t ¡ä ¡Ê E } S_{(h, \ell, t)}^{\prime}=\left\{\left(h^{\prime}, \ell, t\right) | h^{\prime} \in E\right\} \cup\left\{\left(h, \ell, t^{\prime}\right) | t^{\prime} \in E\right\}S(h,ℓ,t)¡ä​={(h¡ä,ℓ,t)¨Oh¡ä¡ÊE}¡È{(h,ℓ,t¡ä)¨Ot¡ä¡ÊE}±íʾ¸ºÑù±¾ÈýÔª×飬¹¹ÔìµÄ·½·¨Êǽ«SÖÐÿ¸öÈýÔª×éµÄͷʵÌå¡¢¹ØÏµºÍβʵÌåÆäÖÐÖ®Ò»Ëæ»úÌæ»»³ÉÆäËûµÄʵÌå»ò¹ØÏµ£¬×¢Òâÿ¸öÈýÔª×éÖ»ÄÜÍ¬Ê±Ìæ»»Ò»¸öÔªËØ¡£
  • margin-based loss£ºÎªÁËÔöǿ֪ʶ±íʾµÄÇø·ÖÄÜÁ¦£¬²ÉÓÃÁË×î´ó¼ä¸ôµÄ·½·¨£¬¿ÉÒÔÀà±ÈSVRµÄËðʧº¯Êý¡£d ( h + ℓ , t ) d(\boldsymbol{h}+\ell, \boldsymbol{t})d(h+ℓ,t)±íʾÕýÑù±¾µÄ²»ÏàËÆµÃ·Ö£¬d ( h ¡ä + ℓ , t ¡ä ) d\left(\boldsymbol{h}^{\prime}+\ell, \boldsymbol{t}^{\prime}\right)d(h¡ä+ℓ,t¡ä)±íʾ¸ºÑù±¾µÄ²»ÏàʶµÃ·Ö£¬×îС»¯Õâ¸öËðʧº¯Êý¿ÉÒÔʹµÃÕýÑù±¾µÄµÃ·ÖÔ½À´Ô½¸ß¶ø¸ºÑù±¾µÄµÃ·ÖÔ½À´Ô½µÍ£¬²¢ÇÒÖ»ÓÐÁ½¸öµÃ·Ö²î¾à´óÓÚijһãÐÖµµÄʱºòloss²ÅΪ0¡£

×îÖÕÄ£ÐÍÕûÌåµÄѵÁ·¹ý³ÌÈçÏ£º

ËäÈ»TransE¼òµ¥ÓÐЧ£¬µ«ÈÔÈ»´æÔÚÒ»¸ö·Ç³£ÑÏÖØµÄÎÊÌ⣺²»Äܺܺô¦Àí¸´ÔÓ¹ØÏµ¡£¾Ù¸öÀõ×Ó£¬ÓÐÁ½¸öÈýÔª×é(ÃÀ¹ú£¬×Üͳ£¬°Â°ÍÂí)ºÍ(ÃÀ¹ú£¬ ×Üͳ£¬ ²¼Ê²)£¬Ê¹ÓÃTransEÄ£ÐͱíʾµÄ»°»áµÃµ½°Â°ÍÂíºÍ²¼Ê²µÄ±íʾÏòÁ¿·Ç³£½Ó½ü£¬ÉõÖÁÍêÈ«Ïàͬ¡£

Code Here
TransHKnowledge Graph Embedding by Translating on Hyperplanes(AAAI2014)

Ïà¶ÔÓÚ֮ǰµÄ֪ʶ±íʾģÐÍ£¬TransEÓÐÁ˺ܴóµÄ¸Ä½ø£¬µ«Êǵ±Ãæ¶Ô×Ô·´¹ØÏµ¡¢Ò»¶Ô¶à¡¢¶à¶ÔÒ»ÒÔ¼°¶à¶Ô¶àÕâÀิÔӵĹØÏµÊ±£¬¾ÍºÜÄÑ´¦ÀíºÃ£¨»áʹµÃһЩ²»Í¬µÄʵÌå¾ßÓÐÏàͬ»òÕßÏà½üµÄÏòÁ¿±íʾ£©¡£ÓÚÊÇ×÷ÕßÌá³öTransHÄ£ÐÍ£¬ÔÚ±£Ö¤Ä£ÐÍcomplexityºÍefficiencyµÄͬʱ£¬½â¾öÉÏÊö¸´ÔÓ¹ØÏµµÄ±íʾ¡£

Ä£ÐÍ

TransHÄ£Ð͵ÄÖ÷Ҫ˼ÏëÊǶÔÿһ¸ö¹ØÏµ¶¨ÒåÁ½¸öÏòÁ¿£º³¬Æ½Ãæw r w_{r}wr​ºÍ¹ØÏµÏòÁ¿d r d_{r}dr​¡£¶ÔÓÚÈÎÒâÒ»¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬h hhºÍt ttÔÚ³¬Æ½ÃæÉϵÄͶӰ·Ö±ðΪh ¡Í h_{\perp}h¡Í​ºÍt ¡Í t_{\perp}t¡Í​£¬Èç¹ûÊÇgolden triplet£¬Ôò´æÔÚh ¡Í + d r ¡Ö t ¡Í h_{\perp}+d_{r} \approx t_{\perp}h¡Í​+dr​¡Öt¡Í​¡£¿´ÏÂͼ¿ÉÄÜ»á¸üÇå³þһЩ£º

Ëðʧº¯ÊýÓëTransEµÄÒ»Ñù£ºL = ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ( h , r , t ) ¡ä [ f r ( h , t ) + ¦Ã − f r ¡ä ( h ¡ä , t ¡ä ) ] + \mathcal{L}=\sum_{(h, r, t) \in \Delta\left(h^{\prime}, r^{\prime}, t^{\prime}\right) \in \Delta_{(h, r, t)}^{\prime}}\left[f_{r}(\mathbf{h}, \mathbf{t})+\gamma-f_{r^{\prime}}\left(\mathbf{h}^{\prime}, \mathbf{t}^{\prime}\right)\right]_{+}L=(h,r,t)¡Ê¦¤(h¡ä,r¡ä,t¡ä)¡Ê¦¤(h,r,t)¡ä​¡Æ​[fr​(h,t)+¦Ã−fr¡ä​(h¡ä,t¡ä)]+​f r ( h , t ) = ¡Î ( h − w r ⊤ h w r ) + d r − ( t − w r ⊤ t w r ) ¡Î 2 2 f_{r}(\mathbf{h}, \mathbf{t})=\left\|\left(\mathbf{h}-\mathbf{w}_{r}^{\top} \mathbf{h} \mathbf{w}_{r}\right)+\mathbf{d}_{r}-\left(\mathbf{t}-\mathbf{w}_{r}^{\top} \mathbf{t} \mathbf{w}_{r}\right)\right\|_{2}^{2}fr​(h,t)=¡Î¡Î​(h−wr⊤​hwr​)+dr​−(t−wr⊤​twr​)¡Î¡Î​22​h ¡Í = h − w r ⊤ h w r , t ¡Í = t − w r ⊤ t w r \mathbf{h}_{\perp}=\mathbf{h}-\mathbf{w}_{r}^{\top} \mathbf{h} \mathbf{w}_{r}, \quad \mathbf{t}_{\perp}=\mathbf{t}-\mathbf{w}_{r}^{\top} \mathbf{t} \mathbf{w}_{r}h¡Í​=h−wr⊤​hwr​,t¡Í​=t−wr⊤​twr​Ä£ÐÍÕûÌåѵÁ·¹ý³ÌҲͬTransEÒ»Ñù£¬ÕâÀï¾Í²»ÔÙ׸Êö¡£

¸º²ÉÑù²ßÂÔ

²»Í¬ÓÚTransEÄ£ÐÍÖеÄËæ»úÌæ»»Í·ÊµÌåºÍβʵÌåÖ®Ò»×÷Ϊ¸ºÑù±¾µÄ·½·¨£¬ÔÚTransHÖÐÖ¸³ö£º

However, as a real knowledge graph is often far from completed, this way of randomly sampling may introduce many false negative labels into training.

ÓÚÊÇ£¬ÔÚÌæ»»Í·ÊµÌå»òÕßβʵÌåµÄʱºò¿¼ÂÇÁËÒ»¸ö²ÉÑù¸ÅÂÊ£¬t p h t p h + h p t \frac{t p h}{t p h+h p t}tph+hpttph​µÄ¸ÅÂÊÌæ»»Í·ÊµÌ壬h p t t p h + h p t \frac{h p t}{t p h+h p t}tph+hpthpt​µÄ¸ÅÂÊÌæ»»Î²ÊµÌ壬ÆäÖÐt p h tphtphΪÿ¸öͷʵÌå¶ÔӦβʵÌåµÄƽ¾ùÊýÁ¿£¬h p t hpthptΪÿ¸öβʵÌå¶ÔӦͷʵÌåµÄƽ¾ùÊýÁ¿¡£Ò²¾ÍÊÇ˵£¬¶ÔÓÚÒ»¶Ô¶àµÄ¹ØÏµ£¬¸ü´óµÄ¸ÅÂÊÌæ»»Í·ÊµÌ壻¶ÔÓÚ¶à¶ÔÒ»µÄ¹ØÏµ£¬¸ü´ó¸ÅÂÊÌæ»»Î²ÊµÌå¡£

Code Here
TransR Learning Entity and Relation Embeddings for Knowledge Graph Completion(AAAI2015)

Ç°Ãæ½éÉܵÄTransEºÍTransH¶¼ÊǼÙÉèÈýÔª×éµÄʵÌåºÍ¹ØÏµÔÚͬһÓïÒå¿Õ¼äÖе쬾¡¹ÜÔÚTransHÖвÉÓÃÁ˹ØÏµ³¬Æ½ÃæµÄ²ßÂÔ£¬µ«ÓÉÓÚʵÌåºÍ¹ØÏµÊÇÍêÈ«²»Í¬µÄ£¬Ã¿Ò»¸öʵÌå¿ÉÄÜ»áÓжà¸öaspect£¬¼´ÊÇÊÇͬһ¸öʵÌåÔÚ²»Í¬µÄ¹ØÏµÏ¹Ø×¢µÄ¿ÉÄÜÊÇÍêÈ«²»Ïà¹ØµÄaspect£¬Òò´Ë֮ǰµÄÄ£ÐÍ»¹ÊDz»×ãÒÔ׼ȷµØ±íʾknowledge graph¡£

ÓÚÊÇ£¬ÔÚ±¾ÎÄÖÐ×÷ÕßÌá³öÒ»ÖÖÐÂÄ£ÐÍTransR£¬Æä˼Ïë¾ÍÊǽ«ÊµÌåºÍ¹ØÏµµÄ±íʾ¿Õ¼äÇø·Ö¿ªÀ´£¬ÊµÌåÓÐentity space£¬¹ØÏµÓÐrelation space£¬ÔÚ¼ÆËãʱͨ¹ýÒ»¸öͶÉ侨ÕóM r M_{r}Mr​½«ÊµÌåÓ³Éäµ½¹ØÏµ¿Õ¼ä½øÐмÆË㡣Ͷ Ó° ¹ý ³Ì £º h r = h M r , t r = t M r ͶӰ¹ý³Ì£º\mathbf{h}_{r}=\mathbf{h} \mathbf{M}_{r}, \quad \mathbf{t}_{r}=\mathbf{t} \mathbf{M}_{r}ͶӰ¹ý³Ì£ºhr​=hMr​,tr​=tMr​´ò ·Ö º¯ Êý £º f r ( h , t ) = ¡Î h r + r − t r ¡Î 2 2 ´ò·Öº¯Êý£º f_{r}(h, t)=\left\|\mathbf{h}_{r}+\mathbf{r}-\mathbf{t}_{r}\right\|_{2}^{2}´ò·Öº¯Êý£ºfr​(h,t)=¡Îhr​+r−tr​¡Î22​Ëð ʧ º¯ Êý £º L = ¡Æ ( h , r , t ) ¡Ê S ( h ¡ä , r , t ¡ä ) ¡Ê S ¡ä max ⁡ ( 0 , f r ( h , t ) + ¦Ã − f r ( h ¡ä , t ¡ä ) ) Ëðʧº¯Êý£ºL=\sum_{(h, r, t) \in S\left(h^{\prime}, r, t^{\prime}\right) \in S^{\prime}} \max \left(0, f_{r}(h, t)+\gamma-f_{r}\left(h^{\prime}, t^{\prime}\right)\right)Ëðʧº¯Êý£ºL=(h,r,t)¡ÊS(h¡ä,r,t¡ä)¡ÊS¡ä¡Æ​max(0,fr​(h,t)+¦Ã−fr​(h¡ä,t¡ä))

´ËÍ⣬²»½ö½öʵÌåÓжà¸öaspect£¬¶ÔÓÚ¹ØÏµ£¬Ò²¿ÉÄÜ´æÔÚ¶àÒåÐÔ£¬±ÈÈç¹ØÏµ£¨location location contains£©Æäʵ°üº¬country-city¡¢country-university¡¢continent-countryµÈ¶àÖÖº¬Ò塣Ϊ´Ë£¬×÷ÕßÃÇÌá³öCTransR£¬¼´Cluster-based TransR£¬¶Ôͬһ¹ØÏµÏµIJ»Í¬ÊµÌå¶Ô½øÐоÛÀಢѧϰµ½¹ØÏµÔÚ²»Í¬¾ÛÀà´ØµÄ±íʾ¡£¾ßÌå×ö·¨ÊÇ

  • ÀûÓÃTransEѵÁ·( h , r , t ) (h, r, t)(h,r,t)ÈýÔª×é
  • ÀûÓÃvector offset ( h − t ) (h-t)(h−t)½øÐоÛÀà
  • ¶ÔÿһÀàµÄ×Ó¹ØÏµ¶¼Ñ§Ï°µ½Ò»¸ö±ä»»¾ØÕóM r M_{r}Mr​ºÍ±íʾÏòÁ¿r c r_{c}rc​f r ( h , t ) = ¡Î h r , c + r c − t r , c ¡Î 2 2 + ¦Á ¡Î r c − r ¡Î 2 2 f_{r}(h, t)=\left\|\mathbf{h}_{r, c}+\mathbf{r}_{c}-\mathbf{t}_{r, c}\right\|_{2}^{2}+\alpha\left\|\mathbf{r}_{c}-\mathbf{r}\right\|_{2}^{2}fr​(h,t)=¡Îhr,c​+rc​−tr,c​¡Î22​+¦Á¡Îrc​−r¡Î22​
Code Here
TransDKnowledge graph embedding via dynamic mapping matrix(ACL2015)

ÎÄÕÂÊ×ÏÈÖ¸³öÁËTransRµÄÈý¸öÎÊÌ⣺

  • ÔÚTransRÖУ¬¶ÔÓÚÌØ¶¨¹ØÏµ£¬ËùÓÐʵÌå¹²ÏíͬһӳÉ侨Õó¡£µ«ÊÇʵ¼ÊÇé¿öͷβʵÌå¿ÉÄÜÊôÓÚ²»Í¬·¶³ë£¬ÀýÈç(ÃÀ¹ú£¬×Üͳ£¬ÌØÀÊÆÕ)Õâ¸öÈýÔª×éÖУ¬ÃÀ¹úºÍÌØÀÊÆÕ¾Í²»ÊÇÏàͬ·¶³ëµÄʵÌ壬Òò´ËÓ¦¸Ã²ÉÓò»Í¬µÄÓ³É侨Õó£»
  • ͶӰÔËËãÊÇʵÌåÓë¹ØÏµµÄ½»»¥¹ý³Ì£¬Ó³É侨Õó½öÓɹØÏµÈ·¶¨ÊDz»ºÏÀíµÄ£»
  • ¾ØÕóÏòÁ¿³Ë·¨ÔËËãÁ¿´ó£¬µ±¹ØÏµÊý´óʱ£¬¾ØÕóÏòÁ¿³Ë·¨µÄ²ÎÊýÒ²±ÈTransEºÍTransH¶à¡£

»ùÓÚ´Ë£¬×÷ÕßÃÇÌá³öÒ»ÖÖ»ùÓÚ¶¯Ì¬Ó³É侨ÕóµÄTransDÄ£ÐÍ¡£¶ÔÓÚÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬ÆäÖÐÿ¸öÔªËØ¶¼ÓÐÁ½ÖÖÏòÁ¿±íʾ£¬Ò»ÖÖÊǹ¹½¨¶¯Ì¬Ó³É侨ÕóÏòÁ¿( h p , r p , t p ) (h_{p}, r_{p}, t_{p})(hp​,rp​,tp​)£»ÁíÍâÒ»ÖÖÊÇÓÃÓÚ×ÔÉíʵÌå/¹ØÏµÓïÒå±íʾ( h , r , t ) (\bold h, \bold r, \bold t)(h,r,t)¡£Ê×ÏÈÊÇÀûÓÃͷβʵÌåµÄÓ³ÉäÏòÁ¿¹¹½¨Ó³É侨Õó£ºM r h = r p h p ⊤ + I m ¡Á n M r t = r p t p ⊤ + I m ¡Á n

Mrh​Mrt​​=rp​hp⊤​+Im¡Án=rp​tp⊤​+Im¡Án​½Ó×Åͨ¹ý¸÷×ÔµÄÓ³É侨Õó½«ÊµÌåͶӰµ½¹ØÏµ¿Õ¼ä£ºh ¡Í = M r h h , t ¡Í = M r t t \mathbf{h}_{\perp}=\mathbf{M}_{r h} \mathbf{h}, \quad \mathbf{t}_{\perp}=\mathbf{M}_{r t} \mathbf{t}h¡Í​=Mrh​h,t¡Í​=Mrt​tÕûÌåµÄ´ò·Öº¯ÊýºÍËðʧº¯ÊýÒÔ¼°ÑµÁ·¹ý³Ì¶¼¸ú֮ǰµÄÄ£ÐÍÒ»Ñù¡£ Code Here
TranSparse Knowledge Graph Completion with Adaptive Sparse Transfer Matrix(AAAI2016)

֮ǰµÄTransϵÁÐÄ£ÐͶ¼ºöÂÔÁË֪ʶ±íÊ¾ÃæÁÙµÄÁ½¸öÎÊÌ⣺

  • Òì¹¹ÐÔ(heterogeneous)£º²»Í¬¹ØÏµÁ¬½ÓµÄʵÌå¶ÔÊýÁ¿²î±ð¾Þ´ó
  • ²»Æ½ºâÐÔ(imbalanced)£ºÍ¬Ò»¹ØÏµÁ´½ÓµÄͷʵÌåºÍβʵÌåÊýÁ¿²î±ð¾Þ´ó£¬ÀýÈç¶ÔÓÚ¹ØÏµÐÔ±ð£¬Í·ÊµÌåµÄÊýÁ¿ºÜ¶à£¨¡®Ð¡Ã÷¡¯¡®Ð¡»¨¡¯etc£©£¬¶ø¶ÔÓÚβʵÌå½ö½öÖ»ÓÐÁ½¸ö£¨¡®ÄС¯¡®Å®¡¯£©

Èç¹ûʹÓÃͬһģÐÍÀ´´¦ÀíËùÓÐÇé¿öµÄ»°£¬Ôò¿ÉÄÜÓÉÓÚÒì¹¹ÐÔµ¼Ö¶ÔÓÚ¸´ÔÓ¹ØÏµ£¨Á´½ÓÊýÁ¿¶à£©Ç·ÄâºÏ£¬¶Ô¼òµ¥¹ØÏµ£¨Á´½ÓÊýÁ¿ÉÙ£©¹ýÄâºÏ¡£ÎªÁ˽â¾öÒì¹¹ÐÔ£¬×÷ÕßÌá³öTranSparseÄ£ÐÍÓÃ×ÔÊÊÓ¦µÄÏ¡Êè¾ØÕó´úÌæÒ»°ãµÄÓ³É侨Õó¡£

TranSparse(share)

ΪÁ˽â¾öÒì¹¹ÐÔÎÊÌ⣬TranSparse½«transfer matrixÉèÖÃΪ×ÔÊÊÓ¦µÄÏ¡Êè¾ØÕ󣬶ÔÓÚ¸´ÔÓ¹ØÏµ£¬ÎÒÃÇÐèÒª¸ü¶àµÄ²ÎÊýȥѧϰÆäÖаüº¬µÄÐÅÏ¢£¬ËùÒÔtransfer matrixµÄÏ¡Êè¶È»á±È½ÏµÍ£¬¼´Óиü¶àµÄÔªËØ²»Îª0£»¶ø¶ÔÓÚ¼òµ¥µÄ¹ØÏµÔòÇ¡ºÃÏà·´¡£¶øÕâÀïÏ¡Êè¶ÈÓÉ¦È r \theta_{r}¦Èr​¶¨Ò壺¦È r = 1 − ( 1 − ¦È min ⁡ ) N r / N r ∗ \theta_{r}=1-\left(1-\theta_{\min }\right) N_{r} / N_{r^{*}}¦Èr​=1−(1−¦Èmin​)Nr​/Nr∗​ÆäÖУ¬¦È m i n \theta_{min}¦Èmin​ÊÇÒ»¸ö0-1Ö®¼äµÄ×îСϡÊè¶È³¬²Î£¬N r N_{r}Nr​±íʾ¹ØÏµr rrÁ´½ÓµÄʵÌå¶ÔÊýÁ¿£¬N r ∗ N_{r^{*}}Nr∗​±íʾÆäÖÐÁ´½ÓµÄ×î´óÖµ¡£

TranSparse(share)ÕâÀïûÓп¼ÂDz»Æ½ºâÐÔ£¬ËùÒÔ¶ÔÓÚͷβʵÌåµÄmapping¹ý³ÌÊÇÒ»ÑùµÄ£ºh p = M r ( ¦È r ) h , t p = M r ( ¦È r ) t \mathbf{h}_{p}=\mathbf{M}_{r}\left(\theta_{r}\right) \mathbf{h}, \quad \mathbf{t}_{p}=\mathbf{M}_{r}\left(\theta_{r}\right) \mathbf{t}hp​=Mr​(¦Èr​)h,tp​=Mr​(¦Èr​)t

TranSparse(separate)

ΪÁ˽â¾ö²»Æ½ºâÐÔÎÊÌ⣬ÕâÀï¸üϸÖµضÔͷʵÌåºÍβʵÌåÉèÖÃÁ˲»Í¬µÄtransfer matrix£º¦È r l = 1 − ( 1 − ¦È min ⁡ ) N r l / N r ∗ l ∗ ( l = h , t ) \theta_{r}^{l}=1-\left(1-\theta_{\min }\right) N_{r}^{l} / N_{r^{*}}^{l^{*}} \quad(l=h, t)¦Èrl​=1−(1−¦Èmin​)Nrl​/Nr∗l∗​(l=h,t)h p = M r h ( ¦È r h ) h , t p = M r t ( ¦È r t ) t \mathbf{h}_{p}=\mathbf{M}_{r}^{h}\left(\theta_{r}^{h}\right) \mathbf{h}, \quad \mathbf{t}_{p}=\mathbf{M}_{r}^{t}\left(\theta_{r}^{t}\right) \mathbf{t}hp​=Mrh​(¦Èrh​)h,tp​=Mrt​(¦Èrt​)t

Ä£ÐÍѵÁ·

Á½Õߣ¨shareºÍseparate£©µÄ´ò·Öº¯Êý¶¼ÊÇ£ºf r ( h , t ) = ¡Î h p + r − t p ¡Î ℓ 1 / 2 2 f_{r}(\mathbf{h}, \mathbf{t})=\left\|\mathbf{h}_{p}+\mathbf{r}-\mathbf{t}_{p}\right\|_{\ell_{1 / 2}}^{2}fr​(h,t)=¡Îhp​+r−tp​¡Îℓ1/2​2​L = ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r , t ) ¡Ê ¦¤ ¡ä [ ¦Ã + f r ( h , t ) − f r ( h ¡ä , t ¡ä ) ] + L=\sum_{(h, r, t) \in \Delta\left(h^{\prime}, r, t\right) \in \Delta^{\prime}}\left[\gamma+f_{r}(\mathbf{h}, \mathbf{t})-f_{r}\left(\mathbf{h}^{\prime}, \mathbf{t}^{\prime}\right)\right]_{+}L=(h,r,t)¡Ê¦¤(h¡ä,r,t)¡Ê¦¤¡ä¡Æ​[¦Ã+fr​(h,t)−fr​(h¡ä,t¡ä)]+​

Code Here
TransM Transition-based knowledge graph embedding with relational mapping properties(2014)

TransMÒ²ÊÇΪÁ˽â¾öTransEÖ»ÄÜ´¦ÀíÒ»¶ÔÒ»¹ØÏµµÄÎÊÌ⣬¶ÔÓÚ´æÔÚ¶àÖÖÑ¡ÔñµÄÒ»·½¸øÁ˸ü¶àµÄ×ÔÓɶȣ¬¼´h + r ¡Ö t h+r \approx th+r¡Öt£¬ÈçÏÂͼ

¾ßÌå×ö·¨ÊÇÔڵ÷ֺ¯ÊýµÄÇ°Ãæ¼ÓÉÏÁËÈ¨ÖØw r w_{r}wr​w r = 1 log ⁡ ( h r p t r + t r p h r ) w_{r}=\frac{1}{\log \left(h_{r} p t_{r}+t_{r} p h_{r}\right)}wr​=log(hr​ptr​+tr​phr​)1​ÆäÖÐh r p t r h_{r}pt_{r}hr​ptr​±íʾβʵÌå¶ÔÓ¦µÄͷʵÌåÊýÁ¿(heads per tail)£¬t r p h r t_{r}ph_{r}tr​phr​ͬÀí¡£´ò ·Ö º¯ Êý £º f r ( h , t ) = w r ¡Î h + r − t ¡Î L 1 / L 2 ´ò·Öº¯Êý£º f_{r}(h, t)=w_{\mathbf{r}}\|\mathbf{h}+\mathbf{r}-\mathbf{t}\|_{L_{1} / L_{2}}´ò·Öº¯Êý£ºfr​(h,t)=wr​¡Îh+r−t¡ÎL1​/L2​​


ManiFoldE From One Point to A Manifold: Knowledge Graph Embedding For Precise Link Prediction(IJCAI2016)

×÷ÕßÖ¸³öĿǰÒÑÓеÄÑо¿¶¼ÎÞ·¨ºÜºÃµØ½â¾ö¾«×¼Á´½ÓÔ¤²â(Precise Link Prediction)£¬Ö÷ÒªÊÇÓÐÁ½¸öÎÊÌ⣺

  • ill-posed algebraic problem£ºÖ¸Ò»¸ö·½³Ì×éÖеķ½³Ìʽ¸öÊýÔ¶´óÓÚ±äÁ¿¸öÊý£¬Õâ»áµ¼ÖÂÇóµÃµÄ½â¾­³£ÊDz»¾«È·ÇÒ²»Îȶ¨µÄ¡£Ö®Ç°µÄ·­ÒëÄ£ÐͶ¼ÊÇ»ùÓÚh r + r = t r \mathbf{h}_{\mathbf{r}}+\mathbf{r}=\mathbf{t}_{\mathbf{r}}hr​+r=tr​£¬Èç¹ûÈýÔª×éµÄÊýÁ¿ÎªT TT£¬embeddingµÄά¶ÈΪd dd£¬ ÔòÒ»¹²ÓÐT ∗ d T*dT∗d¸ö·½³Ì£¬¶øËùÐèҪѧϰµÄ±äÁ¿Ò»¹²ÓÐ( E + R ) ∗ D (E+R)*D(E+R)∗D¸ö£¬ÓÉÓÚT > > ( E + R ) T>>(E+R)T>>(E+R)£¬ÄÇôÕâÀàÄ£ÐÍÓÉÓÚill-posed algebraic problemÎÞ·¨¸ø³ö¾«×¼Á´½ÓÔ¤²â£»
  • adopting an overstrict geometric form£ºTransE¹ýÓÚÑϸñµÄÏÞÖÆÊ¹µÃÁ´½ÓÔ¤²âµÃµ½µÄ»ù±¾¶¼ÎªÒ»¸öµã£¬Õâ¶ÔÓÚ¶à¶Ô¶à¹ØÏµÏÔÈ»ÊDz»ÕýÈ·µÄ¡£ËäÈ»ÔÚ֮ǰÓÐTransH£¬ TransRµÈÄ£ÐͶԴ˽øÐÐÓÅ»¯£¬µ«Êǽ«¹ØÏµÓ³Éäµ½ÁíÍâÒ»¸ö×Ó¿Õ¼äºóÈÔÈ»»á´æÔÚ¸ÃÎÊÌâ¡£

ΪÁ˽â¾öÉÏÊöÁ½¸öÎÊÌ⣬×÷ÕßÌá³öÒ»ÖÖ»ùÓÚÁ÷ÐεÄÄ£ÐÍ£¬½«Ô¼Êøh r + r = t r \mathbf{h}_{\mathbf{r}}+\mathbf{r}=\mathbf{t}_{\mathbf{r}}hr​+r=tr​½øÐзſíM ( h , r , t ) = D r 2 \mathcal{M}(\mathbf{h}, \mathbf{r}, \mathbf{t})=D_{r}^{2}M(h,r,t)=Dr2​ÆäÖÐM \mathcal{M}MÊÇÁ÷Ðκ¯ÊýM ( h , r , t ) = ¡Î h + r − t ¡Î l 2 M(h, r, t)=\|h+r-t\|_{l 2}M(h,r,t)=¡Îh+r−t¡Îl2​ÒÔ( h , r , ∗ ) (h, r, *)(h,r,∗)ΪÀý£¬ËùÓкÏÊʵÄβʵÌå¶¼·Ö²¼ÔÚ¸ßάÁ÷ÐÎÉÏ£¬¾Ù¸öÀõ×Ó£¬M \mathcal{M}MÊÇÒ»¸ö¸ßάÇòÌ壬ÔòËùÓеÄβʵÌå¶¼ÔÚÒÔh + t h+th+tΪÇòÐÄ£¬ÒÔD r D_{r}Dr​Ϊ°ë¾¶µÄÇòÃæÉÏ¡£

´ò ·Ö º¯ Êý £º f ( h , r , t ) = ¡Î M ( h , r , t ) − D r 2 ¡Î l 1 / 2 ´ò·Öº¯Êý£ºf(h, r, t)=\left\|M(h, r, t)-D_{r}^{2}\right\|_{l 1 / 2}´ò·Öº¯Êý£ºf(h,r,t)=¡Î¡Î​M(h,r,t)−Dr2​¡Î¡Î​l1/2​Ä¿ ±ê º¯ Êý £º L = ¡Æ ( h , r , t ) ¡Æ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ¡ä [ f r ¡ä ( h ¡ä , t ¡ä ) − f r ( h , t ) + ¦Ã ] + Ä¿±êº¯Êý£º\mathcal{L}=\sum_{(h, r, t)} \sum_{\left(h^{\prime}, r^{\prime}, t^{\prime}\right) \in \Delta^{\prime}}\left[f_{r}^{\prime}\left(h^{\prime}, t^{\prime}\right)-f_{r}(h, t)+\gamma\right]_{+}Ä¿±êº¯Êý£ºL=(h,r,t)¡Æ​(h¡ä,r¡ä,t¡ä)¡Ê¦¤¡ä¡Æ​[fr¡ä​(h¡ä,t¡ä)−fr​(h,t)+¦Ã]+​

Code Here
TransF Knowledge Graph Embedding by Flexible Translation(2016)

TransFÌá³öÖ÷ÒªÊÇΪÁ˽â¾öTransEµÄÒ»¶ÔÒ»¹ØÏµÎÊÌ⣬ËäÈ»ÔÚ֮ǰÓÐTransHÌá³ö½â¾ö˼·£¬µ«ÊÇÒýÈëÁ˸ü¶àµÄ²ÎÊýÒÔ¼°¸ü´óµÄ¸´ÔÓ¶È¡£ÓÚÊÇTransF¾ÍÊÇΪÁ˽â¾öÒ»¶Ô¶à¶à¶ÔÒ»ÒÔ¼°¶à¶Ô¶à¹ØÏµ£¬Í¬Ê±ÓÖ²»Ôö¼Ó²ÎÊý¡£¾ßÌå¾ÍÊǽ«TransEµÄÏÞÖÆÌõ¼þh + r ¡Ö t \mathbf{h}+\mathbf{r} \approx \mathbf{t}h+r¡Öt·Å¿íΪh + r ¡Ö ¦Á t \mathbf{h}+\mathbf{r} \approx \alpha \mathbf{t}h+r¡Ö¦Át£¬ÈçÏÂͼ

µÃ·Öº¯ÊýͬʱºâÁ¿ÁËh + t h+th+tºÍt tt£¬t − h t-ht−hºÍh hhµÄ·½Ïò£ºf ( h , r , t ) = ( h + r ) T t + ( t − r ) T h f(h, r, t)=(h+r)^{T} t+(t-r)^{T} hf(h,r,t)=(h+r)Tt+(t−r)Th


TransA TransA: An Adaptive Approach for Knowledge Graph Embedding(2015)

×÷ÕßÊ×ÏÈÌá³öÁËÁ½¸öTransEÄ£Ð͵IJ»×㣺

  • loss metric£ºTransEµÄloss metricΪ¡Î h + r − t ¡Î 2 2 \|\mathbf{h}+\mathbf{r}-\mathbf{t}\|_{2}^{2}¡Îh+r−t¡Î22​£¬ÊÇÒ»ÖÖÅ·ÊϾàÀëµÄ¼ÆË㣬Æä¶ÔÓ¦µÄͼÐÎÊÇÒ»¸öÔ²¡£ÓÉÓÚÕâÖÖ¼òµ¥µÄloss metricµ¼Ö²»Äܺܺô¦Àí¸´ÔӵĹØÏµ£¨ÈçÒ»¶Ô¶à¡¢¶à¶ÔÒ»µÈ£©¡£ÂÛÎÄÖиø³öÒ»¸öÏêϸ°¸Àý£¬´ÓÏÂͼ¿ÉÖªÀ¶É«²¿·ÖΪÕýÀý£¬ºìÉ«²¿·ÖΪ¸ºÀý£¬TransE Ä£ÐÍ»®·Ö´íÁËÆß¸öµã¡£¶ø±¾ÎÄÌá³öÁËÒ»ÖÖ»ùÓÚÂíÊϾàÀëµÄ TransA Ä£ÐÍ£¬Æä PCA ½µÎ¬Í¼ÐζÔÓ¦µÄÊÇÒ»¸öÍÖÔ²£¬¸ÃÄ£ÐÍÖ»·Ö´íÁËÈý¸öµã¡£
  • identical dimension£ºTransEµÈ֮ǰµÄÄ£Ð͵ȼ۵ضԴýÏòÁ¿ÖеÄÿһά¶È£¬µ«ÊÇʵ¼ÊÉϸ÷¸öά¶ÈµÄÖØÒª¶ÈÊDz»ÏàͬµÄ£¬ÓÐЩά¶ÈÊÇÓÐ×÷Óõģ¬ÓÐЩά¶ÈÈ´ÊÇÔëÒô¡£»¹ÊÇÒÔÂÛÎÄÖеÄÀõ×Ó£¬¶ÔÓÚ¹ØÏµHasPartÀ´Ëµ£¬×ó±ßµÄTransEÄ£Ð͸ù¾ÝÅ·ÊϾàÀë¼ÆËãµÃ³ö(room, haspart, goniff)ÕâÑù´íÎóµÄÈýÔª×顣ͨ¹ý¶Ôx£¬yÖá½øÐзֽâÖ®ºó·¢ÏÖ£¬¹ØÏµHasPart»á¸ü¹Ø×¢ÓëxÖáÏà½üµÄʵÌå¡£TransAÄ£ÐÍΪ´ËÒýÈëÁ˶Ôÿһά¶ÈµÄ¼ÓȨ¾ØÕó¡£
Ä£ÐÍ

TransAÄ£ÐͶÔ֮ǰµÄ´ò·Öº¯Êý½øÐÐÁ˸Ľø£¬ÒýÈë¼ÓȨ¾ØÕóW r W_{r}Wr​£ºf r ( h , t ) = ( ¨O h + r − t ¨O ) ⊤ W r ( ¨O h + r − t ¨O ) f_{r}(h, t)=(|\mathbf{h}+\mathbf{r}-\mathbf{t}|)^{\top} \mathbf{W}_{\mathbf{r}}(|\mathbf{h}+\mathbf{r}-\mathbf{t}|)fr​(h,t)=(¨Oh+r−t¨O)⊤Wr​(¨Oh+r−t¨O)²¢Í¨¹ýLDL¶ÔW r W_{r}Wr​½øÐзֽ⣺W r = L r ⊤ D r L r \mathbf{W}_{\mathbf{r}}=\mathbf{L}_{\mathbf{r}}^{\top} \mathbf{D}_{\mathbf{r}} \mathbf{L}_{\mathbf{r}}Wr​=Lr⊤​Dr​Lr​ÕûÀíºóµÃµ½×îÖյĴò·Öº¯Êý£ºf r = ( L r ¨O h + r − t ¨O ) ⊤ D r ( L r ¨O h + r − t ¨O ) f_{r}=\left(\mathbf{L}_{\mathbf{r}}|\mathbf{h}+\mathbf{r}-\mathbf{t}|\right)^{\top} \mathbf{D}_{\mathbf{r}}\left(\mathbf{L}_{\mathbf{r}}|\mathbf{h}+\mathbf{r}-\mathbf{t}|\right)fr​=(Lr​¨Oh+r−t¨O)⊤Dr​(Lr​¨Oh+r−t¨O)ѵÁ·¹ý³ÌËðʧº¯Êýmin ⁡ ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ¡ä [ f r ( h , t ) + ¦Ã − f r ¡ä ( h ¡ä , t ¡ä ) ] + + ¦Ë ( ¡Æ r ¡Ê R ¡Î W r ¡Î F 2 ) + C ( ¡Æ e ¡Ê E ¡Î e ¡Î 2 2 + ¡Æ r ¡Ê R ¡Î r ¡Î 2 2 )  s.t.  [ W r ] i j ¡Ý 0

min s.t. ​(h,r,t)¡Ê¦¤(h¡ä,r¡ä,t¡ä)¡Ê¦¤¡ä¡Æ​[fr​(h,t)+¦Ã−fr¡ä​(h¡ä,t¡ä)]+​+¦Ë(r¡ÊR¡Æ​¡ÎWr​¡ÎF2​)+C(e¡ÊE¡Æ​¡Îe¡Î22​+r¡ÊR¡Æ​¡Îr¡Î22​)[Wr​]ij​¡Ý0​
KG2E Learning to Represent Knowledge Graphs with Gaussian Embedding(2015)

×÷ÕßÖ¸³öTransE¡¢TransRµÈ֮ǰµÄÑо¿£¬ÔÚ·ÖÀëÕýÈýÔª×é¼°Æä¶ÔÓ¦µÄ¸ºÈýÔª×éʱ£¬²»Í¬µÄʵÌåºÍ¹ØÏµÍùÍù¹²ÏíÏàͬµÄ±ß½ç£¬¶øÖªÊ¶¿âÖÐʵÌåºÍ¹ØÏµµÄ**£¨·Ç£©È·¶¨ÐÔ**±»ÍêÈ«ºöÂÔ¡£µ«Êµ¼ÊÉÏ£¬²»Í¬µÄʵÌåºÍ¹ØÏµ³£³£°üº¬²»Í¬µÄÈ·¶¨ÐÔ¡£ÔÚÕâÀһ¸öʵÌå/¹ØÏµµÄ£¨·Ç£©È·¶¨ÐÔ±íʾÔÚ½«Ò»¸öÈýÔª×é×÷ΪÉÏÏÂÎÄÆÀ·Öʱ±íʾÆäÓïÒåµÄ¿ÉÐŶȡ£¾Ù¸öÀõ×Ó£¬ÔÚÍÆ¶ÏÒ»¸öÈËʱ£¬Åäż¹ØÏµµÄÈ·¶¨ÐÔÃ÷ÏÔ´óÓÚ¹ú¼®¡£ÔÚÔ¤²âHillary Clintonʱ£¬µ±ÎÒÃÇÖªµÀËýÕÉ·ò£¨Åäż£©ÊÇBill Clintonʱ£¬ÎÒÃÇ¿ÉÄܸüÓÐÐÅÐÄÖªµÀËýÊÇË­£¬¶ø²»ÊÇÖªµÀËý³öÉúÔÚ£¨¹ú¼®£©ÃÀ¹ú¡£

Ϊ´Ë£¬±¾ÎÄʹÓÃGaussian Distribution À´±íʾʵÌåºÍ¹ØÏµ£¬Ê¹ÓÃЭ·½²îÀ´±íʾʵÌåºÍ¹ØÏµµÄ²»È·¶¨¶È¡£ÏàͬÑÕÉ«µÄԲȦ´ú±íͬÒâÈýÔª×飬ԲȦ´óСÔò±íʾ²»Í¬ÈýÔª×éµÄ²»È·¶¨¶È¡£

Ïà¶ÔÓÚ֮ǰµÄpoint-based model£¬±¾ÎĵÄKG2EÊÇÒ»ÖÖdensity-based model¡£ÔÚ½¨Ä£¹ý³ÌÖÐÇ¿µ÷ÁË(un)certaintyµÄ¸ÅÄÈÚÈë¹ØÏµºÍʵÌåÓïÒå±¾ÉíµÄ²»È·¶¨ÐÔ²¢Ê¹Óøß˹·Ö²¼Ð­·½²î±íʾʵÌå¹ØÏµµÄ²»È·¶¨¶È£¬Ê¹Óøß˹·Ö²¼µÄ¾ùÖµ±íʾʵÌå»ò¹ØÏµÔÚÓïÒå¿Õ¼äÖеÄÖÐÐÄÖµ¡£µ«ÊÇKG2EÔÚlink predictionÈÎÎñÖеĶà¶Ô¶à¹ØÏµÉϱíÏÖ²»ÊǺܺã¬Ö÷ÒªÔ­ÒòÊÇÄ£ÐÍûÓп¼ÂÇʵÌåºÍ¹ØÏµµÄÀàÐͺÍÁ£¶È¡£


TransG TransG : A Generative Model for Knowledge Graph Embedding(2016)

±¾ÎÄÖ÷ÒªÊÇΪÁ˽â¾ö¶à¹ØÏµÓïÒ壨multiple relation semantics£©£¬¼´Ä³Ò»ÖÖ¹ØÏµ¿ÉÄÜ»á´æÔÚ¶à¸öÀà±ðµÄÓïÒ壬±ÈÈç¶ÔÓÚ(Atlantics, HasPart, NewYorkBay)ºÍ(Table, HasPart, Leg)Á½¸öÈýÔª×é¶¼ÊôÓÚ¹ØÏµHasPart£¬µ«ÊÇËûÃÇÔÚÓïÒåÉϲ¢²»Ïàͬ£¬Ò»¸öÊÇλÖõÄÓïÒ壬һ¸öÊDz¿¼þµÄÓïÒå¡£ÆäʵÕâ¸öÎÊÌâÔÚ֮ǰ½éÉܵÄCTransRÖÐÒ²Ìá³ö¹ý½â¾ö·½°¸£¬µ«ÊÇ×÷ÕßËÆºõÈÏΪCTransRÔ¤´¦Àí¾ÛÀàµÄ²Ù×÷²»ÊǺÜelegant¡£

Ϊ´Ë£¬×÷ÕßÃÇÌá³öÁËÒ»ÖÖ»ùÓÚ±´Ò¶Ë¹·Ç²ÎµÄÎÞÏÞ»ìºÍǶÈëÄ£ÐÍ£ºÈÏΪ¹ØÏµÏòÁ¿ÓÉÈô¸É×ӳɷÖÏòÁ¿ºÏ³É£¬Ä£ÐÍ»á¸ù¾ÝʵÌå¶Ô×Ô¶¯Ñ¡ÔñÒ»¸ö¹ØÏµÏòÁ¿£¬¶ø¶àÉÙ¸öÕâÑùµÄ¹ØÏµÏòÁ¿»¹¿ÉÒÔÓÉÄ£ÐÍ×Ô¶¯Ñ¡Ôñ¡£ ÕûÌå¹ý³ÌÈçÏ£º


Ò»ÕÅ×ܽá

ÒÔÉÏ2019.10.08


Í·Ïñ±»ÆÁ±Î
2#
·¢±íÓÚ 2023-3-29 12:55:14 | Ö»¿´¸Ã×÷Õß À´×Ô£º ºþÄÏ À´×Ô ºþÄÏ
¡¾Õã½­´óѧ¡¿Ò»¸ö¿ªÔ´µÄ֪ʶͼÆ×±íʾѧϰ¿ò¼ÜÒ»¡¢NeuralKG£ºÒ»¸ö¿ªÔ´µÄ֪ʶͼÆ×±íʾѧϰ¿ò¼Ü




OpenKGµØÖ·£ºopenkg.cn/tool/neuralkg

GitHubµØÖ·£ºgithub.com/zjukg/neuralkg

GiteeµØÖ·£ºgitee.com/openkg/neuralkg

NeuralKG¹ÙÍø£ºneuralkg.zjukg.org

ÂÛÎĵØÖ·£ºarxiv.org/pdf/2202.12571.pdf

¿ª·ÅÐí¿ÉЭÒ飺Apache License 2.0

¹±Ï×ÕߣºÕã½­´óѧ£¨ÕÅÎÄ£¬³ÂÏæéª£¬Ò¦ìõ£¬³ÂÃûÑÖìÓåɺ£¬ÓáºéÌΣ¬»ÆÓê·å£¬ÐíÔóÖÚ£¬ÐìÑž²£¬Ò¶Åô£¬ÕÅÒç³Ú£¬ÕÅÄþÔ¥£¬Ö£¹úÖᣬ³Â»ª¾û£©



1¡¢NeuralKG¼ò½é


֪ʶͼÆ×£¨KG£©ÒÔ£¨Í·ÊµÌå¡¢¹ØÏµ¡¢Î²ÊµÌ壩µÄÐÎʽ½«ÏÖʵÊÀ½çµÄÊÂʵ±íʾΪ·ûºÅÈýÔª×飬ÀýÈ磬£¨µØÇò£¬°üº¬ÔÚ£¬Ì«Ñôϵͳ£©¡£Ä¿Ç°£¬Ðí¶à´ó¹æÄ£µÄ֪ʶͼÆ×Òѱ»Ìá³ö£¬ÈçYAGO¡¢Freebase¡¢NELLºÍWikidata¡£ËüÃÇ×÷Ϊ±³¾°ÖªÊ¶µÄÌṩÕß±»¹ã·ºÓÃÓÚ×ÔÈ»ÓïÑÔÀí½â¡¢ÍƼöϵͳ¡¢ÎÊÌâ»Ø´ðµÈÈÎÎñÖС£


´«Í³µÄ¶ÔKGµÄ²éѯºÍÍÆÀíÊÇ»ùÓÚ¶Ô·ûºÅ±íÕ÷µÄ²Ù×÷Íê³ÉµÄ£¬ÕâºÜÈÝÒ×Êܵ½ÖªÊ¶Í¼Æ×ÖеÄÔëÉùºÍ×ÔÉí²»ÍêÈ«ÐÔµÄÓ°Ïì¡£Òò´Ë£¬Ëæ×ÅÉî¶ÈѧϰµÄ·¢Õ¹£¬¶Ô֪ʶͼÆ×µÄ±íʾѧϰ£¨KGE£©µÃµ½Á˹㷺µÄ̽Ë÷£¬Ä¿µÄÊǽ«ÖªÊ¶Í¼Æ×ǶÈëµ½Ò»¸öµÍάÏòÁ¿¿Õ¼äÖУ¬Í¬Ê±±£ÁôÆäÖаüº¬µÄ½á¹¹ºÍÓïÒåÐÅÏ¢¡£


NeuralKGÊÇÒ»¸öÓÃÓÚ֪ʶͼÆ×µÄ¶àÑù»¯Éñ¾­ÍøÂ翪Դ¿â£¬Ö¼ÔÚΪ֪ʶͼÆ×Ó¦ÓÃÌṩÏòÁ¿¿Õ¼äµÄ±íʾѧϰ¹¤¾ß¡£ºÍÆäËûÒÑÓеÄ֪ʶͼÆ×±íʾѧϰ¿ªÔ´¹¤¾ßÏà±È£¬ËüÖ§³ÖÈý¸öϵÁеÄKGEsµÄ¿ª·¢ºÍÉè¼Æ£¬°üÀ¨»ùÓÚÏòÁ¿¿Õ¼ä¼ÙÉèµÄ´«Í³C-KGEs£¬»ùÓÚͼÉñ¾­ÍøÂçµÄGNN-based KGEs£¬ºÍ»ùÓÚ¹æÔòµÄRule-based KGEs¡£


½éÉÜNeuralKGµÄÂÛÎÄ·¢±íÓÚ¹ú¼ÊÐÅÏ¢»ñÈ¡»áÒéSIGIR2022¡£


2¡¢NeuralKG¹¤¾ß¸ÅÀÀ

NeuralKG¹¤¾ß°üÕûÌå»ùÓÚPyTorch Lightning¿ò¼Ü£¬ÌṩÁËÓÃÓÚ¶àÖÖ֪ʶͼÆ×±íʾѧϰģÐ͵ÄͨÓù¤×÷Á÷³Ì£¬²¢ÇҸ߶ÈÄ£¿é»¯¡£NeuralKG¾ßÓÐÈçÏÂÌØÐÔ£º

  • Ö§³Ö¶àÖÖ·½·¨¡£ NeuralKGÌṩÁ˶ÔÈýÀà֪ʶͼÆ×ǶÈë·½·¨µÄ´úÂëʵÏÖ£¬°üÀ¨´«Í³ÖªÊ¶Í¼Æ×ǶÈë,»ùÓÚͼÉñ¾­ÍøÂçµÄ֪ʶͼÆ×ǶÈë,ÒÔ¼°»ùÓÚ¹æÔòµÄ֪ʶͼÆ×ǶÈë¡£

  • ·½±ã¿ìËٵĿÍÖÆ»¯¡£NeuralKG¶Ô֪ʶͼÆ×±íʾѧϰģÐͽøÐÐÁËϸ»¯µÄÄ£¿é½âñÒÔ·½±ãʹÓÃÕß¿ìËÙ¶¨ÖÆ×Ô¼ºµÄÄ£ÐÍ£¬ÆäÖаüÀ¨ÖªÊ¶Í¼Æ×Êý¾Ý´¦ÀíÄ£¿é£¬¸º²ÉÑùÄ£¿é£¬³¬²ÎÊý¼à¿ØÄ£¿é£¬ÑµÁ·Ä£¿éÒÔ¼°Ä£ÐÍÑé֤ģ¿é¡£ÕâЩģ¿é±»¹ã·ºÓ¦ÓÃÓÚ²»Í¬µÄ֪ʶͼÆ×ǶÈëÄ£ÐÍÖС£

  • ³¤ÆÚ¼¼ÊõÖ§³Ö¡£NeuralKGµÄºËÐÄ¿ª·¢ÍŶӽ«Ìṩ³¤ÆÚµÄ¼¼ÊõÖ§³Ö£¬Í¬Ê±ÎÒÃÇÒ²»¶Ó­¿ª·¢ÕßÃǶԱ¾ÏîÄ¿½øÐÐpull requests¡£



NeuralKG×ÜÌå¼Ü¹¹Í¼ÈçÏ£º


NeuralKG1.0 °üº¬µÄÄ£ÐÍÓУº

[td]

Àà±ð

Ä£ÐÍ

´«Í³ÖªÊ¶Í¼Æ×ǶÈ루KGEModel£©

TransE, TransH, TransR, ComplEx, DistMult, RotatE, ConvE, BoxE, CrossE, SimplE

»ùÓÚͼÉñ¾­ÍøÂçµÄ֪ʶͼÆ×ǶÈ루GNNModel£©

RGCN, KBAT, CompGCN, XTransE

»ùÓÚ¹æÔòµÄ֪ʶͼÆ×ǶÈ루RuleModel£©

ComplEx-NNE+AER, RUGE, IterE



3¡¢NeuralKG¿ìËÙÉÏÊÖ

ÏÂÔØ°²×°£º


ʹÓÃÑùÀý£º


ѵÁ·¹ý³Ì¿ÉÐÞ¸ÄyamlÎļþ½øÐÐÖеij¬²ÎÉèÖúÍËÑË÷£º


4¡¢NeuralKG²âÊÔЧ¹û

¡¾Õã½­´óѧ¡¿Ò»¸ö¿ªÔ´µÄ֪ʶͼÆ×±íʾѧϰ¿ò¼Ü





ÎÄÕÂ֪ʶµãÓë¹Ù·½ÖªÊ¶µµ°¸Æ¥Å䣬¿É½øÒ»²½Ñ§Ï°Ïà¹ØÖªÊ¶
PythonÈëÃż¼ÄÜÊ÷È˹¤ÖÇÄÜ×ÔÈ»ÓïÑÔ´¦Àí261142 ÈËÕýÔÚϵͳѧϰÖÐ









Í·Ïñ±»ÆÁ±Î
3#
·¢±íÓÚ 2023-3-29 13:02:13 | Ö»¿´¸Ã×÷Õß À´×Ô£º ºþÄÏ À´×Ô ºþÄÏ
±¾Ìû×îºóÓÉ lovetvb ÓÚ 2023-3-29 13:09 ±à¼­

СÃ×ÔÚ֪ʶ±íʾѧϰµÄ̽Ë÷Óëʵ¼ù

×ªÔØ¹«ÖںŠ| DataFunTalk


µ¼¶Á£ºÖªÊ¶±íʾÊÇ֪ʶ»ñÈ¡ÓëÓ¦ÓõĻù´¡£¬¹á´©ÁËСÃ×֪ʶͼÆ×µÄ¹¹½¨ÓëÓ¦Óᣱ¾ÎĽ«½áºÏСÃ×֪ʶͼÆ×µÄ¹¹½¨¼°Ð¡°®Îʴ𳡾°£¬½éÉÜÈÚºÏÎı¾ºÍ֪ʶͼÆ×µÄ֪ʶ±íʾѧϰ·½·¨£¬ÒÔ¼°ÖªÊ¶±íʾÔÚ֪ʶͼÆ×²¹È«¡¢ÊµÌåÁ´½Ó¡¢ÊµÌåÍÆ¼öµÈÈÎÎñµÄÂ䵨¡£Ö÷ÒªÎ§ÈÆÒÔÏÂ3µãÕ¹¿ª£º

  • ÒµÎñ½éÉÜ£¬Ð¡Ã×֪ʶͼÆ×µÄ¼Ü¹¹ºÍÒµÎñ£»

  • Ëã·¨½éÉÜ£¬ÈÚºÏÎı¾ºÍ֪ʶͼÆ×µÄ±íʾѧϰ·½·¨£»

  • Ëã·¨Ó¦Óã¬ÖªÊ¶±íʾѧϰÔÚʵÌåÁ´½Ó¡¢ÊµÌåÍÆ¼ö¡¢ÖªÊ¶²¹È«µÄÓ¦Óã»


01ÒµÎñ½éÉÜ1. СÃ×֪ʶͼÆ×ÍŶÓ

СÃ×֪ʶͼÆ×ÍŶӣ¬Ö¼ÔÚ³x¾¿ÖªÊ¶Í¼Æ×ÔÚ¿ª·ÅÁìÓòºÍÐÐÒµÁìÓòµÄ¹¹½¨ºÍÓ¦Óü¼Êõ£¬°Ñ֪ʶͼÆ×ÍÆ¹ãµ½Ïà¹ØµÄÒµÎñ³¡¾°ÉÏ¡£Ä¿Ç°ÍŶÓÒѾ­¹¹½¨ÁË´ó¹æÄ£¡¢¸ßÖÊÁ¿µÄ֪ʶͼÆ×£¬ÌṩÁËʵÌå¼ìË÷¡¢ÊµÌåÁ´½Ó¡¢¸ÅÄîͼÆ×µÈ·þÎñ£¬²¢ÇÒ·þÎñÓÚС°®Í¬Ñ§¡¢Ð¡Ã×Íø¡¢Ð¡Ã×ÐÅÏ¢Á÷µÈÒµÎñ·½¡£

2. ֪ʶͼÆ×ΪС°®¸³ÄÜ

ÕâÊÇÒ»¸ö֪ʶͼÆ×ΪС°®¸³ÄܵÄÀý×Ó¡£µ±Óû§Ñ¯Îʹ®Àþ¼®¹áµÄʱºò£¬ÎÒÃÇ´Ó¿âÖиø³öÏàÓ¦µÄ´ð°¸£¬Óë¹®ÀþÏà¹ØµÄʵÌåÐÅÏ¢¡£ÏÂÃæ¼òµ¥½éÉÜһϴ¦ÀíÁ÷³Ì¡£

µ±Óû§Ñ¯ÎÊÒ»¸öÎÊÌ⣨query£©Ê±£¬±ÈÈç˵ÎÊÌâÊÇ¡°Î人´óѧÖܱßÓÐʲôºÃ³ÔµÄ£¿¡±£¬ËüµÄ½â´ðÁ÷³Ì¾ÍÊÇ£º

¢Ù Ê×ÏÈÓïÑÔʶ±ð³öÕâ¾ä»°µÄÎı¾ÄÚÈÝ£»

¢Ú È»ºóͨ¹ý·ÖÎö·¢ÏÖÓû§µÄÒâͼÊÇÏëѯÎÊ¡°ÃÀʳ¡±Ïà¹ØµÄÊÂÎ

¢Û ½Ó×Åͨ¹ýʵÌ寥ÅäÈ¥½øÐкËÐÄʵÌåµÄʶ±ð£¬ÊµÌåµÄÆçÒåÐÔÏû³ýÒÔ¼°ÊôÐԵĹéÒ»µÈ´¦Àí£¬È·¶¨Óû§Ñ¯ÎʵÄÊÇÈ«¹úÖØµã´óѧ¡°Î人´óѧ¡±Õâ¸öʵÌåµÄ¡°ÖܱßÃÀʳ¡±Õâ¸öÊôÐÔ£»

¢Ü ¾Ý´Ë´Ó¿âÖвéѯÏàÓ¦µÄ½á¹û£¬²¢ÇÒ×÷ΪÊä³ö£»

¢Ý ÁíÍâÎÒÃÇ»¹»áÕë¶Ô¸ÃʵÌå×öʵÌåµÄÍÆ¼ö£¬ÒÔ´ËʵÏÖÏàËÆÎÊÌâµÄÍÆ¼ö£»

02Ëã·¨½éÉÜ

֪ʶ±íʾѧϰÊÇÖ¸»ùÓÚ·Ö²¼Ê½µÄ±íʾ˼Ï룬½«ÊµÌå»òÕßÊǹØÏµµÄÓïÒåÐÅÏ¢Ó³Éäµ½µÍά¡¢³íÃÜ¡¢ÊµÖµµÄÏòÁ¿¿Õ¼äÖУ¬Ê¹µÃÓïÒåÏàËÆµÄÁ½¸ö¶ÔÏóÖ®¼äµÄ¾àÀëÒ²ºÜÏà½ü¡£

×î³£¼ûµÄ±íʾѧϰ·½·¨ÊÇÈÚºÏÊÂʵÐÅÏ¢µÄ·½·¨£¬±ÈÈç»ùÓÚ·­Òë¡¢ÕÅÁ¿·Ö½â¡¢Éñ¾­ÍøÂçºÍͼÉñ¾­ÍøÂçµÄ¸÷ÖÖÄ£ÐÍ¡£µ«ÊÇÕâЩģÐͲ¢²»ÉÆÓÚ´¦Àí´ó¹æÄ£ÖªÊ¶Í¼Æ×ÖдæÔÚʵÌåÓë¹ØÏµ³¤Î²·Ö²¼µÄÎÊÌâ¡£ÔÚͼÆ×ÖУ¬³¤Î²·Ö²¼ÌåÏÖΪºÜ¶àʵÌåÊýÁ¿¼«ÉÙÉõÖÁûÓйØÏµÊÂʵ£¬Õâ¾Íµ¼ÖÂÊý¾Ý´æÔÚºÜÑÏÖØµÄÏ¡ÊèÐÔ¡£

¶ÔÓÚÕâЩ³¤Î²µÄʵÌåºÍ¹ØÏµ£¬ÔÚûÓлòÕߺÜÉÙ¹ØÏµµÄÇé¿öÏ£¬½ö»ùÓÚ´«Í³µÄÊÂʵÈýÔª×飨ͷ²¿£¬¹ØÏµ£¬Î²²¿£©½øÐÐѧϰ£¬ÊÇûÓа취µÃµ½µÄ¡£¶Ô´Ë´óÀÐÃdz¢ÊÔÁ˸÷ÖÖÎ廨°ËÃŵĽâ¾ö°ì·¨£¬×î¼òµ¥Ö±½ÓµÄ¾ÍÊÇ£º

¢Ù ÀûÓÃ֪ʶ¿âÖÐÆäËûµÄÐÅÏ¢£¬±ÈÈç˵Îı¾ÃèÊöÐÅÏ¢¡¢ÐÅϢʵÌåÀàÐÍ¡¢¹Ø¼ü·¾¶¡¢Âß¼­¹æÔòµÈ£¬»¹°üÀ¨ÊµÌåµÄÊôÐÔ¡¢Ê±ÐòÐÅÏ¢¡¢Í¼½á¹¹µÈ£»

¢Ú ÀûÓÃ֪ʶ¿âÍâµÄº£Á¿ÐÅÏ¢£¬±ÈÈç˵»¥ÁªÍøµÈ£¬°üº¬´óÁ¿ÖªÊ¶¿âʵÌåºÍ¹ØÏµµÄÓйصÄÐÅÏ¢¡£

1. ÈÚºÏÎı¾ÃèÊöµÄÓÅÊÆ

ÈÚºÏÎı¾ÃèÊöµÄÓÅÊÆÓÐÄÄЩ£¿

  • ·¢¾òʵÌåÖ®¼äµÄÓïÒåÏà¹ØÐÔ£¬¾«È·µÄÓïÒå±íÊöÄܹ»ÌáÉýÈýÔª×éµÄ¿ÉÇø·ÖÐÔ¡£ÔÚÉÏÃæµÄÀý×ÓÖÐÎÒÃÇ¿ÉÒÔ¿´µ½{Èö±´Äþ£¬Åäż£¬Àî°×}£¬¶øÀî°×µÄÃèÊöÎı¾ÖоʹæÔÚ¡°Èö±´ÄþÆÞ×Ó¡±ÕâÑùµÄ¹Ø¼üÐÅÏ¢¡£¸ÃÇ龳ϣ¬ÈÚºÏÎı¾ÃèÊöµÄÓïÒåÐÅÏ¢Äܹ»°ïÖú·¢¾ò¸ü¶àµÄÓïÒåÖ®¼äµÄÏà¹ØÐÔ£»

  • µ±Ò»Ð©ÊµÌå¶ÔÓÚÏÖÓеÄ֪ʶͼÆ×À´ËµÊÇÐµģ¬²¢ÇÒ½ö½ö´øÓÐÃèÊöÐÔÐÅÏ¢µÄʱºò£¬´«Í³µÄ֪ʶͼÆ×±íʾѧϰ·½·¨²»Äܹ»±íʾÕâЩеÄʵÌ壬µ«ÊÇÈÚÈëÁËÎı¾ÃèÊöµÄÄ£ÐÍ£¬¾ÍÄܹ»Í¨¹ýÃèÊöÐÅÏ¢½¨Á¢ÕâЩʵÌåµÄ±í´ï¡£


Îı¾ÃèÊöÈçºÎ¹¹³ÉÄØ£¿ÎÒÃǵĴ¦Àí·½Ê½Êǽ«ÊµÌåµÄÀàÐÍ¡¢Îı¾ÃèÊöºÍÖØÒªµÄÈýÔª×é°´ÕÕÒ»¶¨µÄ¹æÔò½øÐÐÆ´½Ó£¬¹¹³ÉÒ»¶ÎÎı¾£¬×÷ΪʵÌåµÄÃèÊöÎı¾£¬Õâ¶ÎÎı¾±È¼òµ¥µÄÎı¾ÃèÊö°üº¬¸ü¶àµÄÐÅÏ¢¡£

2. Îı¾Óë֪ʶͼÆ×¶ÔÆë

ÏÂÃæ½«»á½éÉÜÁ½ÖÖ¾­µäµÄÈÚºÏÎı¾ºÍ֪ʶͼÆ×µÄ֪ʶ±íʾѧϰ·½·¨£¬ÕâÁ½ÖÖ·½·¨¶¼¿ÉÒÔ½«ÊµÌåÏòÁ¿¡¢¹ØÏµÏòÁ¿ºÍ´ÊÏòÁ¿·Åµ½Í¬Ò»¸öÓïÒå¿Õ¼äÏ¡£ÎªÊ²Ã´Òª°ÑÎı¾ÒÔ¼°´ÊÏòÁ¿·Åµ½Ò»¸ö¿Õ¼äÖУ¿ÒòΪÈç¹ûÎÒÃÇÓöµ½ÁËÐèҪͬʱ´¦ÀíÎı¾ºÍʵÌåµÄÈÎÎñ£¬ÊµÌåºÍÎı¾ÖеĴÊ×öÄÚ»ýµÈÏòÁ¿ÔËËã²Å»áÓÐÒâÒ壬ÒÀ¿¿ÕâЩÔËËã·½·¨ÎÒÃǾÍÄܱȽÏʵÌåºÍÎı¾Ö®¼äµÄ´ÊµÄ¹ØÏµ¡£

ÕâһƪÎÄÕÂÃèÊöÁ˱ȽϾ­µäµÄÎı¾Óë֪ʶͼÆ×¶ÔÆëµÄÄ£ÐÍJointly£¨ÁªºÏÄ£ÐÍ£©£¬×÷ÕßÏȺ󷢱íÁËÁ½ÆªÂÛÎÄÀ´ÓÅ»¯¸Ã·½·¨¡£ÎÄÕÂÑо¿µÄÄÚÈÝÊÇÈÚºÏÎı¾ÐÅÏ¢µ½ÖªÊ¶Í¼Æ×ÖУ¬ÊµÏÖ֪ʶͼÆ×ÖеÄʵÌåºÍʵÌåÃèÊöÎı¾ÁªºÏǶÈë±íʾ¡£¶ÔÆëÄ£Ð͵ĹؼüÔÚÓÚ½«ÊµÌåÏòÁ¿¡¢¹ØÏµÏòÁ¿ºÍ´ÊÏòÁ¿±íʾÔÚͬһ¸öÓïÒå¿Õ¼äÏ¡£ÒªÇóʵÌåµÄ±íʾÏòÁ¿²»½öÂú×ã֪ʶͼÆ×µÄ½á¹¹»¯Ô¼Êø£¬Í¬Ê±Ò²Òª±»Îı¾ÃèÊöÖеĴÊÏòÁ¿½øÐÐÔ¼Êø¡£Ä£ÐÍÒ»¹²·ÖΪÈý¸ö²¿·Ö£º

  • Îı¾Ç¶È룺²ÉÓÃskip-gramÄ£ÐÍ£¬ÀûÓÃŷʽ¾àÀëºâÁ¿Á½¸öµ¥´ÊÖ®¼äµÄÏàËÆÐÔ£¬ÑµÁ·´ÊÓë´ÊÖ®¼äµÄÔ¼Êø£»

  • ֪ʶǶÈ룺²ÉÓÃTrans-EÄ£ÐÍ£¬ÑµÁ·ÊµÌåÓëʵÌåÖ®¼äµÄÔ¼Êø£»

  • ¶ÔÆëÄ£ÐÍ£ºÀûÓÃÎı¾ÃèÊö¶ÔÆë£¬ÑµÁ·ÊµÌåºÍÎı¾Ö®¼äµÄÔ¼Êø£¬È·±£¹ØÏµÄܹ»ºÍÎı¾µÄµ¥´ÊÔÚͬһ¸öÓïÒå¿Õ¼äÖС£


µÚ¶þƪÂÛÎÄÒ²¸ù¾ÝÀàËÆµÄÔ­Àí£¬½«»ùÓÚÆ½ÒƵÄǶÈë·½·¨´ÓÌØ¶¨µÄÈýÔª×éǶÈëÀ©Õ¹µ½ÁËÎı¾¸Ð֪ģÐÍ£¬Ìá³öÁËÃûΪDKRLµÄÄ£ÐÍ¡£¸ÃÄ£Ð͵ÄÌØµãÊÇ£º

  • ¶ÔÓÚÊÂʵԪ×éÂÛÎIJÉÓÃÁ˵äÐ͵ÄTrans-EÄ£ÐÍ£¬Í¨¹ý×î´óËÆÈ»Öµ»ñµÃʵÌåºÍ¹ØÏµµÄǶÈ룻

  • ¶ÔÓÚÃèÊöÎı¾£¬ÂÛÎÄʹÓÃÁËÁ¬Ðø´Ê´üÄ£ÐͺÍÉî¶È¾í»ýÄ£ÐͶÔÎı¾½øÐÐǶÈë¡£Á¬Ðø´Ê´üÄ£ÐͺöÂÔÁËÎı¾µÄ´ÊÐò£¬¶ø¾í»ýÄ£ÐͻῼÂÇ´ÊÐò£»

  • ¶Ôÿһ¸öʵÌ壬DKRL¶¼»áѧϰÓïÒåµÄǶÈëºÍ½á¹¹µÄǶÈ룬ÔÙͨ¹ýÓÒ²àµÄһϵÁй«Ê½½øÐÐÄâºÏ¡£


3. ÐèÇóºÍʵÏÖ

ºóÐøÈÎÎñÐèҪͨ¹ýԤѵÁ·µÃµ½´ÊÏòÁ¿£¬ÊµÌåÏòÁ¿£¬²¢ÇÒ±£Ö¤Á½ÕßÖ®¼äÐèÒªÄܹ»¼ÆËãÏàËÆ¶È£¬Í¬Ê±Ò²Òª±£Ö¤ÊµÌåÏòÁ¿ºÍʵÌåÏòÁ¿Ö®¼ä¿ÉÒÔ¼ÆËãÏàËÆ¶È¡£ÉÏÎĽéÉܵÄÁ½¸öÄ£Ð;ù¿ÉÒÔÂú×ã¸ÃÐèÇó¡£ÓÒÉϵıí¸ñչʾÁ˼¸¸ö²»Í¬µÄÄ£ÐÍÔÚÁ´½ÓÔ¤²âÈÎÎñÉϵÄЧ¹û£¬ÁªºÏÄ£ÐÍ£¬¼´µÚһƪÂÛÎÄÖеÄÄ£ÐÍÕ¹ÏÖÁ˽ϺõÄЧ¹û£¬ÓÚÊÇÎÒÃÇ»ùÓÚ¸ÃÄ£ÐͶÔʵÌåºÍ´Ê½øÐÐÁËѵÁ·£¬µÃµ½ÁË´ÊÏòÁ¿¡¢¹ØÏµÏòÁ¿ÒÔ¼°ÊµÌåÏòÁ¿¡£¸ÃÄ£Ð͵ÄЧ¹û¾ßÌåÌåÏÖÔÚ£º

  • ÓÉͼһ£¨×óÉÏ£©¿ÉÒÔ¿´µ½¡°ÍõÕßÈÙÒ«¡±Õâ¸ö´ÊºÍ¡°Àî°×¡±µÄºòѡʵÌåÖ®¼äµÄÏàËÆ¶ÈÆÀ·Ö£¬¸Ã·ÖÊý±íÃ÷Ä£ÐÍѧϰµ½Á˴ʺÍʵÌåÖ®¼äµÄ¹ØÁª£»

  • ÓÉͼ¶þ£¨ÓÒÉÏ£©¿ÉÒÔ¿´µ½ËäÈ»¡°ÌÆ´úÊ«ÈËÀî°×¡±µÄÎı¾ÃèÊöÖв»´æÔÚ¡°½«½ø¾Æ¡±Ò»´Ê£¬µ«ÊÇÄ£ÐÍҲѧµ½ÁËÆä¹ØÁª£»

  • ͼÈýͼËÄ£¨×óϺÍÓÒÏ£©ÏÔʾ£¬Ä£ÐÍҲѧϰµ½ÁËʵÌåÏòÁ¿ÓëʵÌåÏòÁ¿Ö®¼äµÄ¹ØÏµ£¬±ÈÈçÖ²ÎСÃס±ÊµÌåÏòÁ¿ºÍË®¹û¡°Æ»¹û¡±ÊµÌåÏòÁ¿±È½Ï¿¿½ü£¬¶ø¡°Ð¡Ã×¹«Ë¾¡±µÄʵÌåÏòÁ¿ºÍ¡°Æ»¹û¹«Ë¾¡±µÄʵÌåÏòÁ¿±È½Ï¿¿½ü¡£


ÕâÐ©ÌØÐÔ¶ÔÍê³ÉºóÐøµÄÈÎÎñÓкܴóµÄ°ïÖú¡£

03Ëã·¨Ó¦ÓÃ1. ʵÌåÁ´½Ó

ʵÌåÁ´½ÓÈÎÎñÄ¿±êÊǰÑÎı¾ÖеÄʵÌåÖ¸³ÆÏ¼´ÊµÌåÃû³Æ£¬Á´½Óµ½ÖªÊ¶¿âÖжÔÓ¦µÄʵÌåÉÏ¡£

¾ÙÒ»¸öÀý×ÓÀ´°ïÖú´ó¼ÒÀí½âʵÌåÁ´½Ó£¬±ÈÈçÎÊÌâ¡°ÍõÕßÈÙÒ«ÖеÄÀî°×ÓÐÄÄЩ̨´Ê£¿¡±£¬ÎªÁ˽â´ðÕâ¸öÎÊÌâÎÒÃÇÐèÒª£º

¢Ù ʶ±ð¾ä×ÓÖеĺËÐÄʵÌå¡°Àî°×¡±£»

¢Ú ´Ó¿âÖмìË÷¡°Àî°×¡±ËùÓеĺòѡʵÌ壻

¢Û ʵÌåÁ´½Ó£¬´ÓÖÚ¶àµÄºòѡʵÌåÖÐÕÒµ½ÕýÈ·µÄʵÌ壬Óë¾ä×ÓÖеġ°Àî°×¡±½øÐйØÁª£»

ʵÌåÁ´½ÓµÄÄѵãÖ÷ÒªÓÐÁ½¸ö·½Ã棺

  • ʵÌå»áÓв»Í¬µÄ±í´ï·½Ê½£¨mention£©£¬±ÈÈç¡°ÇàÁ«¾ÓÊ¿¡¢ÀîÌ«°×¡±£¬Ò²¶ÔÓ¦ÁËÀî°×Õâ¸öʵÌ壻

  • ͬһ¸ö±í´ï·½Ê½Ò²»á¶ÔÓ¦²»Í¬µÄʵÌ壬±ÈÈç˵¡°ÍõÕßÈÙÒ«ÖÐÀî°×µÄ¼¼ÄÜÊÇʲô£¿¡±£¬¡°Àî°×ºÍ¶Å¸¦²¢³ÆÎªÊ²Ã´£¿¡±£¬ÕâÁ½¾äÖÐʵÌåµÄ±í´ï·½Ê½¶¼ÊÇ¡°Àî°×¡±£¬µ«ÊǶÔÓ¦Á˲»Í¬µÄʵÌå¡£


×ó²àͼÖÐչʾÁËʵÌåÁ´½ÓµÄ´¦ÀíÁ÷³Ì£¬ÕâÀïÏêϸ½éÉÜÒ»ÏÂʵÌåÏûÆç²¿·Ö¡£

ʵÌåÏûÆç°üÀ¨Á½¸öÄ£¿é£¬µÚÒ»¸ö²¿·ÖÊÇ´ÖÅÅ£¬µÚ¶þ¸ö²¿·ÖÊǾ«ÅÅ¡£

¹ØÓÚ´ÖÅÅ

ΪʲôҪ×ö´ÖÅÅ´¦Àí£¿

ÔÚ×öºòѡʵÌåÉú³Éʱ£¬ÎÒÃÇÏ£Íû´Ó¿âÖлñÈ¡¾¡¿ÉÄܶàµÄÏà¹ØÊµÌ壬ȷ±£Ã»ÓÐÒÅ©ÕýȷʵÌå¡£µ«ÕâÑù×ö»áµ¼ÖÂÏûÆçÕâÒ»²½Öè±»ÒýÈëÁËÌ«¶àµÄÔëÉù£¬Ôì³ÉÏûÆçЧÂʵÄϽµ¡£ËùÒÔÐèÒª´ÖÅÅÄ£ÐÍÀ´½µµÍºòѡʵÌåµÄ¸öÊý¡£¾­¹ýʵÑ飬´ÖÅźó£¬ÏûÆç׼ȷÂÊÌáÉýÁË3%£¬Ô¤²âµÄËÙ¶ÈÌáÉýÁË50%£¬¶øÕÙ»ØÂʽö½öϽµÁË0.4%¡£

¾Ù¸öÀý×Ó£¬±ÈÈç¡°ÍõÕßÈÙÒ«ÖеÄÀî°×ÓÐÄÄЩ̨´Ê£¿¡±Õâ¸öÎÊÌ⣬ÔÚÎÒÃǵĿâÖС°ÍõÕßÈÙÒ«¡±µÄºòѡʵÌåÓÐ71¸ö£¬¡°Àî°×¡±µÄºòѡʵÌåÓÐ59¸ö¡£ÔÚ´ÖÅÅʱ£¬ÎÒÃÇ»áΪÿһ¸öºòѡʵÌå½øÐдò·Ö£¬°´ÕÕÏà¹Ø¶È´Ó´óµ½Ð¡½øÐÐÅÅÁУ¬Ñ¡Ôñÿһ¸ömentionËù¶ÔÓ¦µÄ×îÏàËÆµÄn¸öʵÌå(Top n)£¬×÷Ϊ¾«ÅŵÄÊäÈë¡£

ÈçºÎʵÏÖ´ÖÅÅ£¿

´ÖÅÅÄ£ÐÍ£¬ÒªÇó¸ßÕٻء¢¸ßÐÔÄÜ¡£ÎÒÃDzÉÓÃÁËÉÏÒ»½ÚÖÐÈں϶àÔªÐÅϢ֪ʶ±íʾѧϰ·½·¨ËùѵÁ·µÃµ½µÄʵÌåÏòÁ¿ºÍ´ÊÏòÁ¿£¬ÒòΪËûÃÇ´¦ÔÚͬһ¸öÏòÁ¿¿Õ¼äÖУ¬ÎÒÃÇ¿ÉÒÔ¶ÔÆä½øÐÐÏòÁ¿¼ÆËã¡£¶¨ÒåÁËÈý¸öÌØÕ÷£¬·Ö±ðÊÇContextºÍCoherenceÒÔ¼°LinkCount£º

  • Context ±íʾmentionµÄÉÏÏÂÎÄÌØÕ÷£¬Ëüͨ¹ýºòѡʵÌåÏòÁ¿ºÍÎÊÌâÖеÄÿһ¸ö´ÊÏòÁ¿½øÐг˻ýÔËËãµÃµ½£¬ÓÃÓÚ·¢ÏÖÎÊÌâÖÐÄÄЩ´ÊºÍºòѡʵÌåÏà¹Ø£»

  • Coherence ±íʾʵÌåµÄÒ»ÖÂÐÔ£¬Í¨¹ý¼ÆËãºòѡʵÌåºÍÎÊÌâÖÐÆäËûmentionµÄºòѡʵÌåÏà¹ØÐÔÀ´ÊµÏÖ£»

  • LinkCount ±íʾʵÌåµÄÏÈÑé֪ʶ£¬Í¨¹ý±ê×¢Êý¾Ý¶øÀ´¡£


ÀûÓÃÒ»¸ö¶à²ã¸ÐÖª»ú¶ÔÕâÈý¸öÌØÕ÷½øÐÐÈںϣ¬×îÖյõ½Ã¿Ò»¸öºòѡʵÌåµÄ´ÖÅÅ·ÖÊý¡£ÅÅÁв¢Ñ¡Ôñÿһ¸ömentionËù¶ÔÓ¦µÄ×îÏàËÆµÄTop n¸öʵÌ壬×÷Ϊ¾«ÅŵÄÊäÈë¡£

¹ØÓÚ¾«ÅÅ

ÔÚ´ÖÅÅÖ®ºó£¬Ã¿Ò»¸ömentionµÄºòѡʵÌå¸öÊý±»´ó´ó½µµÍ£¬´ËʱÎÒÃÇ»á¶ÔÕâЩʵÌå½øÐо«ÅÅ´¦Àí¡£¾«ÅÅÄ£ÐÍÖУ¬ÎÒÃÇÀûÓÃBert¹¹½¨Ò»¸ö¾ä×Ó¶Ô¶þ·ÖÀàÄ£ÐÍ£¬ÓÃÀ´ÅжϺòѡʵÌåºÍÎÊÌâÖеÄmentionÏà¹Ø¶È¡£¾ßÌåÁ÷³ÌÈçÏ£º

¢Ù ¸ÃÄ£Ð͵ÄÊäÈëÊÇÒ»¸ö¾ä×Ó¶Ô£¬text_aÊDZê¼ÇÁËmentionλÖõÄÎı¾£¬text_bÊǺòѡʵÌåµÄÃèÊöÎı¾¡£¾ä×Ó¶Ô¾­¹ýBert±àÂëÖ®ºóÈ¡[CLS]ÏòÁ¿£¬ÔÙ¾­¹ýÈ«Á¬½Ó²ã£¬µÃµ½ÉÏÏÂÎÄÌØÕ÷£»

¢Ú ºÏ²¢´ÖÅŵÄÈý¸öÌØÕ÷½øÐÐÈ«Á¬½ÓµÄÈÚºÏѵÁ·£»

¢Û ¶ÔºòѡʵÌå½øÐжþ´ÎÅÅÐò£»

¢Ü ÅжÏÊÇ·ñΪδ֪ʵÌ壻

¢Ý Ñ¡ÔñTop 1µÄʵÌå×÷ΪmentionÁ´½ÓµÄʵÌ壻

ÔÚÄ£ÐÍѵÁ·Ê±£¬ÎÒÃǶÔѵÁ··½·¨½øÐÐÁËһЩÓÅ»¯¡£ÀûÓÃ֪ʶͼÆ×ÖеĹØÏµÈýÔª×é¹¹½¨ÏûÆçµÄÑù±¾£¬¹ØÏµÈýÔª×é°üÀ¨Í·ÊµÌå¡¢¹ØÏµºÍβʵÌ壬ͷʵÌåºÍβʵÌåÓжàÖÖ±í´ï·½Ê½£¨mention£©£¬ÀûÓÃÕâЩ²»Í¬µÄ±í´ï·½Ê½£¬ÎÒÃÇ¿ÉÒÔÈ¥¹¹½¨´óÁ¿µÄÕý¸ºÑù±¾£¬À´°ïÖúÎÒÃÇȥѧϰmentionºÍʵÌåÖ®¼äµÄÓïÒåÌØÕ÷¹ØÏµ¡£¾­¹ýµÚÒ»´ÎµÄԤѵÁ·£¬Ö»ÐèÒªÔÙѵÁ·ÉÙÁ¿¾­¹ý±ê×¢µÄÏßÉÏÊý¾Ý£¬Ä£Ð;ͿÉÒÔ´ïµ½½ÏºÃµÄÏûÆçЧ¹û¡£

2. ʵÌåÍÆ¼ö

ʵÌåÍÆ¼öÈÎÎñµÄÄ¿±êÊǸù¾Ý¸ø¶¨µÄʵÌåÍÆ¼öһϵÁÐÏà¹ØµÄʵÌ壬ÕâÁ½ÕÅͼչʾÁËÎÒÃǵÄʵÌåÍÆ¼öµÄÓ¦Óó¡¾°¡£ÎÒÃǶÔʵÌåÍÆ¼öµÄ¹¤×÷ÔÝʱ»¹´¦ÓÚÆð²½µÄ½×¶Î£¬²¢Ã»Óп¼ÂǸ´ÔӵĸöÐÔ»¯ÍƼö£¬Ä¿Ç°Ö»¹Ø×¢ÊµÌåÖ®¼äµÄÏàËÆ¶È¡£

×óͼչʾÁËʵÌåÁ´½ÓÈçºÎÓ¦ÓÃÓÚÖÇÄÜÎÊ´ðÎÊÌâÍÆ¼ö£¬ÎÊÌâͨ¹ýSLU´¦ÀíÖ®ºó»áµÃµ½ÆäÒâͼºÍÖ÷ʵÌ壬Ȼºó½èÖúʵÌåÍÆ¼öµÃµ½Ïà¹ØµÄʵÌ壬Ïà¹ØÊµÌå±»ÓÃÀ´¹¹½¨Ïà¹ØµÄÎÊÌ⣬±ÈÈç˵¡±Î人´óѧÖܱߺóԵģ¿¡°£¬Ê¶±ðµ½ÆäÖ÷ʵÌåΪ¡±Î人´óѧ¡°¡¢ºËÐÄÒâͼΪ¡±ÃÀʳ¡°£¬ÒÔ´ËÍÆ¼öʵÌåÏà¹ØµÄÎÊÌ⣬±ÈÈç˵¡±»ªÖпƼ¼´óѧÖܱßÓÐʲôºÃ³ÔµÄ£¿¡°£¬¡±Ç廪´óѧÖܱßÓÐʲôºÃ³ÔµÄ£¿¡°£¬¡±Î人¿Æ¼¼´óѧÖܱßÓÐʲôºÃ³ÔµÄ£¿¡°¡£Í¬Ê±ÊµÏÖÁËÍÆ¼öÒâͼÏà¹ØµÄÎÊÌ⣬±ÈÈç˵¡±Î人´óѧÖܱßÓÐʲôºÃÍæµÄ£¿¡°£¬¡±Î人´óѧÖܱßÓÐʲô¾°µã£¿¡°£¬¡±Î人´óѧÖܱßÓÐʲô¾Æµê£¿¡°µÈµÈ¡£

ÓÒͼչʾÁËʵÌåÍÆ¼öÔÚͼÆ××Ô¶¯»¯¹¹½¨Æ½Ì¨ÉϵÄÓ¦Ó㬵±Óû§ËÑË÷Ò»¸öʵÌåµÄʱºò£¬Æ½Ì¨»áΪÆäÍÆ¼öÏà¹ØµÄʵÌå¡£

ʵÌåÍÆ¼öµÄÄѵãÔÚÓÚ¡°ÀäÆô¶¯ÎÊÌ⡱£¬¼´ÈçºÎȥѰÕÒʵÌåµÄÏà¹ØÊµÌå¡£

ÎÒÃÇ·¢ÏÖ°Ù¿ÆÒ³Ãæ¹ØÏµÈýÔª×éÒÔ¼°ÐÂÎÅÖеĹ²ÏÖʵÌ壬¶¼¿ÉÒÔ×÷ΪÏà¹ØÊµÌå½øÐÐÍÆ¼ö¡£ÓÚÊÇÎÒÃǶ԰ٿÆÒ³ÃæÖªÊ¶Í¼Æ×ÖеĹØÏµÈýÔª×éºÍ¾­¹ýʵÌåÁ´½Ó´¦ÀíµÄÐÂÎÅÖеÄʵÌå½øÐгéÈ¡£¬ÒÔÀà±ðΪ±ê×¼½øÐÐɸ·Ö£¬×÷ΪʵÌåÍÆ¼öÄ£Ð͵ÄÕýÑù±¾¡£¶ø¸ºÑù±¾¿ÉÒÔ´Ó¿âÖÐµÄÆäËûʵÌåÖгéÈ¡¡£

ʵÌåÍÆ¼öÄ£ÐÍ·ÖΪÁ½¸ö²¿·Ö£¬±íʾģÐÍºÍÆ¥ÅäÄ£ÐÍ£º

  • ±íʾģÐÍÀûÓõڶþ½ÚÖеÄDKRLÄ£ÐͽøÐÐ֪ʶ±íʾѧϰ¡£Ñ§Ï°¹ØÏµÈýÔª×éÖеĽṹ»¯ÐÅÏ¢£¬±àÂ벿·ÖʹÓÃBert½øÐÐÌæ»»£»

  • Æ¥ÅäÄ£ÐÍÀûÓÃDSSMÄ£ÐÍ£¬¸´ÓÃÁ˱íʾģÐÍÖÐѧϰµ½µÄ²ÎÊý£¬½«Á½¸öʵÌå±àÂë³ÉÏòÁ¿£¬Í¨¹ý¼ÆËãÓàÏÒÏàËÆ¶ÈÀ´È¥ºâÁ¿Á½¸öʵÌåÖ®¼äµÄÏà¹Ø¶È¡£


3. ֪ʶ²¹È«

ÔÚ¹¹½¨ÖªÊ¶Í¼Æ×ʱ£¬ÐèÒª´Ó°ë½á¹¹»¯»òÕ߷ǽṹ»¯Êý¾ÝÖгéÈ¡ÈýÔª×飬µ«ÕâЩÈýÔª×éÄÑÃâ»á´æÔÚÐÅϢȱʧÇé¿ö£¬±ÈÈç×óͼÖУ¬Ð¡Ã×´ú±íÈËÎïÖÐÁÖ±ó¡¢ÍõÏèµÈÈË£¬¶¼È±Ê§Á˳¬Á´½Ó£¬Èö±´ÄþÅäż¡¢¸¸Ä¸¡¢ÃÃÃÃÒ²¶¼È±Ê§Á˳¬Á´½Ó£¬Õâ¾Íµ¼ÖÂÔÚ¹¹½¨ÖªÊ¶Í¼Æ×ʱ£¬²»ÄÜ»ñÈ¡ÍêÕûµÄ¹ØÏµÈýÔª×é¡£

ʵÌ岹ȫÈÎÎñ¿ÉÒÔ¸ÅÀ¨Îª£ºÕë¶ÔÒÑÖªµÄͷʵÌå¡¢¹ØÏµºÍβʵÌåmentionµÄÇé¿öÏ£¬¹ØÁª¿âÖеÄʵÌåÒÔ²¹È«ÈýÔª×é¡£ÎÒÃǵÄÉè¼Æ·½°¸ÈçÏ£º

¢Ù ÀûÓÃSchemaȥȷ¶¨Î²ÊµÌåµÄÀà±ð£»

¢Ú ͨ¹ýβʵÌåµÄmentionɸѡµÃµ½Î²ÊµÌåµÄºòѡʵÌ壬¹¹ÔìÈýÔª×飻

¢Û ͨ¹ýÈýÔª×é·ÖÀàÄ£ÐÍÅжϹ¹ÔìµÄÈýÔª×éÊÇ·ñÕýÈ·£»

¢Ü ¾­¹ý¶ÔÕâЩÈýÔª×éµÄ·ÖÊý½øÐÐÅÅÐòÖ®ºó£¬Ñ¡ÔñTop 1ÇÒÔ¤²âÕýÈ·µÄÈýÔª×é¡£

ÈýÔª×éµÄ¹¹½¨Ò²¿¼ÂÇÁËÃèÊöʵÌåµÄÎı¾£¬ÎÒÃÇÔÙ´ÎÀûÓÃÁËÉñͨ¹ã´óµÄBERTÍê³ÉÄ£Ð͵Ĺ¹½¨£¬²Î¿¼ÁËKG-BERTÕâÆªÂÛÎÄ¡£

½«ÒÑÖªµÄ¹ØÏµÈýÔª×éÈçÉÏͼËùʾ½øÐй¹Ô죬text_aÊÇͷʵÌåµÄÃèÊöÎı¾£¬text_bÊǹØÏµµÄÎı¾Ãû³Æ£¬text_cÊÇβʵÌåµÄÃèÊöÎı¾£¬ÕâЩÊäÈë¾­¹ýBERTµÄ±àÂëÖ®ºó£¬ÔÙ¾­¹ýÒ»¸öÈ«Á¬½Ó²ã£¬¼ÆËãµÃµ½ÓïÒåÌØÕ÷£¬²¢ºÍÁíÍâÒ»¸ö½á¹¹»¯µÄÌØÕ÷½øÐÐÈںϣ¬×îÖյõ½Ò»¸ö·ÖÊý¡£ÕâÀïµÄ¡°½á¹¹»¯ÌØÕ÷¡±ÓÉÀ¶É«¿òÖеķ½³Ì½øÐбíʾ£¬Õû¸öÄ£Ð͵Äloss£¬¿ÉÒÔÓúìÉ«¿òÖеķ½³Ì±íʾ¡£

¾Ù¸öÀý×Ó£¬±ÈÈçÅжÏÈýÔª×é{Èö±´Äþ£¬Åäż£¬Àî°×}ÊÇ·ñÕýÈ·£¬¡°Àî°×¡±µÄµÚÒ»¸öºòѡʵÌåÊÇÕýÈ·µÄ£¬¿ÉÒÔ×÷ΪÕýÑù±¾£¬ÆäËûʵÌå¶¼ÊǸºÑù±¾£¬È»ºó¶ÔÄ£ÐͽøÐÐѵÁ·£¬Ô¤²âÿһ¶Ô×Ô¶¯¹¹½¨µÄÈýÔª×éµÄ·ÖÊý£¬°´ÕÕ´Ó´óµ½Ð¡µÄ˳Ðò½øÐÐÅÅÐò£¬Ñ¡Ôñ·ÖÊý´óÓÚ0.5ÇÒTop 1µÄÈýÔª×é×÷ΪÕýÈ·µÄÈýÔª×飬²¹³äµ½ÖªÊ¶Í¼Æ×µ±ÖС£

04×ܽáÓëÕ¹Íû

±¾Îļòµ¥½éÉÜÁË֪ʶ±íʾѧϰÔÚʵÌåÁ´½Ó¡¢ÊµÌåÍÆ¼öºÍ֪ʶ²¹È«ÖеÄÓ¦Ó㻺Íword2vecÒ»Ñù£¬Í¨¹ý֪ʶ±íʾѧϰµÃµ½µÄʵÌåÏòÁ¿¿ÉÒÔÓ¦Óõ½ºÜ¶à³¡¾°ÖУ»¹¤Òµ½çʵÓÃ×îÖØÒª£¬ºÜ¶à³¡¾°Ï£¬¶ÔÄ£Ð͵ĸ´ÔÓÐÔºÜÃô¸Ð£¬Ñ¡ÔñÄ£ÐÍÐèÒª×ۺϿ¼Á¿¡£ÖªÊ¶±íʾѧϰµÄ̽Ë÷֮·»¹Óкܳ¤£¬Í¬Ö¾ÃǼÓÓÍ£¡£¡£¡

²Î¿¼ÎÄÏ×

1. Wang Z, Zhang J, Feng J, et al. Knowledge graph and text jointly embedding[C] //Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1591-1601.

2. Zhong H, Zhang J, Wang Z, et al. Aligning knowledge and text embeddings by entity descriptions[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 267-272.

3. Xie R, Liu Z, Jia J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2016, 30(1).

4. Xiao H, Huang M, Meng L, et al. SSP: semantic space projection for knowledge graph embedding with text descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).

5. Reimers N, Gurevych I. Sentence-bert: Sentence embeddings using siamese bert-networks[J]. arXiv preprint arXiv:1908.10084, 2019.

6. Yao L, Mao C, Luo Y. KG-BERT: BERT for knowledge graph completion[J]. arXiv preprint arXiv:1909.03193, 2019.

7. ÁõÖªÔ¶, ËïïËÉ, ÁÖÑÜ¿­, µÈ. ֪ʶ±íʾѧϰÑо¿½øÕ¹[J]. ¼ÆËã»úÑо¿Óë·¢Õ¹, 2016, 53(2): 247.

½ñÌìµÄ·ÖÏí¾Íµ½ÕâÀлл´ó¼Ò¡£


·ÖÏí¼Î±ö£º

·å»áÍÆ¼ö£º

7ÔÂ10ÈÕ£¬DataFun½«¾Ù°ì×ÔÈ»ÓïÑÔ´¦Àí·å»á£¬½ìʱ½«ÑûÇë°üÀ¨À´×ÔСÃ׵ȹ«Ë¾µÄ¶àÎ»ÖØÁ¿¼¶¼Î±ö£¬¾ÍNLPµÄ»ù´¡¼¼Êõ¡¢ÓïÒå±íʾÓë¼ÆËã¡¢¶àÄ£Àí½âÓëÉú³É¡¢ÐÅÏ¢³éÈ¡Óë¼ìË÷¡¢ÈË»ú¶Ô»°Óë½»»¥¡¢²úÒµ´´ÐÂÓëʵ¼ù¡¢»úÆ÷·­ÒëÓëͬ´«µÈ»°Ìâ½øÐÐÉî¶È·ÖÏí£¬»¶Ó­Ð¡»ï°éÃÇʶ±ð¶þάÂ룬Á˽âÏêÇ飬²¢±¨Ãû²ÎÓ룬±¾´Î·å»á½«È«³ÌÖ±²¥£¡



OpenKG

OpenKG£¨ÖÐÎÄ¿ª·Å֪ʶͼÆ×£©Ö¼ÔÚÍÆ¶¯ÒÔÖÐÎÄΪºËÐĵÄ֪ʶͼÆ×Êý¾ÝµÄ¿ª·Å¡¢»¥Áª¼°ÖÚ°ü£¬²¢´Ù½øÖªÊ¶Í¼Æ×Ëã·¨¡¢¹¤¾ß¼°Æ½Ì¨µÄ¿ªÔ´¿ª·Å¡£

µã»÷ÔĶÁÔ­ÎÄ£¬½øÈë OpenKG ÍøÕ¾¡£




Í·Ïñ±»ÆÁ±Î
4#
·¢±íÓÚ 2023-3-29 13:02:43 | Ö»¿´¸Ã×÷Õß À´×Ô£º ºþÄÏ À´×Ô ºþÄÏ
¡ü¡ü¡ü¹Ø×¢ºó"ÐDZê"Datawhale
ÿÈոɻõ & ÿÔÂ×é¶Óѧϰ£¬²»´í¹ý Datawhale·ÖÏí
Ö÷Ì⣺֪ʶͼÆ×£¬Ç°Ñؼ¼ÊõÓëÓ¦ÓÃ
³¤°´ÉÏͼ»òµã»÷¡ºÔĶÁÔ­ÎÄ¡»Ãâ·Ñ±¨ÃûËæ×ÅÈ˹¤ÖÇÄܼ¼ÊõµÄ·¢Õ¹ÓëÓ¦Óã¬ÖªÊ¶Í¼Æ××÷ΪAI½ø²½µÄ½×ÌÝÔ½À´Ô½Êܵ½Ñ§Êõ½çºÍ²úÒµ½çµÄÖØÊÓ£¬²¢ÇÒÒѾ­ÔںܶàÁìÓò¡¢³¡¾°ÖÐÌåÏÖ³ö×ÔÉíµÄ¼ÛÖµ¡£´Ó×î³õµÄ»¥ÁªÍøËÑË÷¡¢ÍƼö¡¢ÎÊ´ðµÈToC³¡¾°£¬Öð½¥½øÈëµ½´¹Ö±ÐÐÒµToBµÄÓ¦Óõ±ÖС£È»¶ø£¬³¡¾°µÄ±ä»¯¶Ô֪ʶͼÆ×¼¼ÊõµÄ·¢Õ¹ÓëÓ¦ÓÃÒ²Ìá³öÁËеÄÌôÕ½Óë»úÓö¡£·±ÔÓ¶à±äµÄÐÐÒµ³¡¾°£¬¸´ÔÓרҵµÄ֪ʶ±íʾ£¬ÐÐÒµµÍ×ÊÔ´µÄ֪ʶ»ñÈ¡£¬Éî¶È¾ö²ßµÄ֪ʶӦÓõȣ¬¶Ô֪ʶͼÆ×µÄ¼¼ÊõÌá³ö¸ü¶àеÄÒªÇó¡£2021Äê03ÔÂ27ÈÕ£¬µÚÒ»½ìDataFunSummit£ºÖªÊ¶Í¼Æ×ÔÚÏß·å»áÀ´À²£¡½«ÑûÇë3λÖ÷ϯ£¬8λ³öÆ·ÈË£¬40Óàλ֪ÃûѧÕßÓëÒ»Ïß¼¼Êõר¼Ò³öϯ±¾´Î·å»á£¬¹²»°¡ºÖªÊ¶Í¼Æ×Ç°ÑØ¼¼ÊõÓëÈÈÃÅÓ¦Óỡ£¨„֪ʶͼÆ×ÔÚÏß·å»á±¨Ãû£¬ÏÖÒÑÈ«ÃæÆô¶¯±¾½ìÔÚÏß·å»áÏÖÒÑÈ«Ãæ¿ª·ÅÃâ·Ñ±¨Ãû£¬ÖªÊ¶Í¼Æ×ÓëÈ˹¤ÖÇÄÜÁìÓò²»ÈÝ´í¹ýµÄÒµÄÚ·ÖÏí£¬3ÔÂ27ÈÕÓëÄãһͬ¼ûÖ¤¡£
¨„µ½µ×ÓÐÄÄЩ¸É»õ£¿¾ßÌåʱ¼äÊÇ£¿
DataFunSummit£ºÖªÊ¶Í¼Æ×ÔÚÏß·å»á
·å»áʱ¼ä
03ÔÂ27ÈÕ(ÖÜÁù)£¬09:00-18:00
ÃûÓþÖ÷ϯ
ФÑö»ª ¸´µ©´óѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦
·å»áÖ÷ϯ
ÅíÎÀ»ª °Ù¶È֪ʶͼÆ×²¿Ö÷Èμܹ¹Ê¦
Ô¬¾§ »ªÎªÔÆ È˹¤ÖÇÄÜÁìÓò¸±×ܲÃ
»î¶¯Ö÷°ì
DataFun
×êʯºÏ×÷
°Ù¶È¡¢»ªÎªÔÆ¡¢ìؼò¿Æ¼¼
ºÏ×÷»ï°é
֪ʶ¹¤³¡¡¢¿ª·Å֪ʶͼÆ×¡¢°¢ÀïСÃÛ¡¢Ð¡Ãס¢Æ½°²¿Æ¼¼
ºÏ×÷ÉçÇø
È˹¤ÖÇÄÜÓöÉÏ֪ʶͼÆ×
ÏêϸÈÕ³Ì
ÂÛ̳Ãû³Æ
֪ʶ±íʾÓëÍÆÀíÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬09:00-13:00
ÂÛ̳³öÆ·
ÍõȪ ²©Ê¿ °Ù¶È×ÊÉ³Ìʦ
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
09:00-09:40
֪ʶÔöǿͼÓïÒåÀí½â¼¼Êõ
°Ù¶È ×ÊÉîÑз¢¹¤³Ìʦ
»ÆÕý½Ü
09:40-10:20
ÊôÐÔ¶ÔÆëºÍ¹éÒòÔÚÉÌÆ·Æó»®ÖеÄÓ¦ÓÃ
°¢Àï°Í°Í ¸ß¼¶Ëã·¨¹¤³Ìʦ
ÕÅÌÎ
10:20-11:00
ʵÌå¶ÔÆëËã·¨ÔÚµçÉÌÁìÓòµ±ÖеÄʵ¼ùºÍÓ¦ÓÃ
¾©¶« Ë㷨ר¼Ò
ÕÔѧÃô ²©Ê¿
11:00-11:40
֪ʶ±íÕ÷Ôڲ⾮×ۺϽâÊÍÖеÄÓ¦ÓÃ
»ªÎª ¼¼Êõר¼Ò
Îâ½ÜÎÄ ²©Ê¿
11:40-12:20
»ùÓÚµçÉ̳£Ê¶Í¼Æ×µÄ֪ʶ±íʾÓëÓ¦ÓÃ
°¢Àï°Í°Í ¸ß¼¶Ëã·¨¹¤³Ìʦ
ÂæÐìÊ¥
12:20-13:00
СÃ×ÔÚ֪ʶ±íʾѧϰ·½ÏòµÄ̽Ë÷Óëʵ¼ù
СÃ× Ëã·¨¹¤³Ìʦ
ÂÀÈÙÈÙ

ÂÛ̳Ãû³Æ
֪ʶ»ñÈ¡ÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬09:00-12:20
ÂÛ̳³öÆ·
»§±£Ìï ²©Ê¿ ¹þ¹¤´óÉîÛÚÖúÀí½ÌÊÚ
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
09:00-09:40
ʼþ³éÈ¡ÓëʼþͼÆ×¹¹½¨
Öйú¿ÆÑ§Ôº×Ô¶¯»¯Ñо¿Ëù¸±Ñо¿Ô±
³ÂÓñ²© ²©Ê¿
09:40-10:20
¡°Éñ¾­+·ûºÅ¡±Ñ§Ï°Óë¶àģ̬֪ʶ·¢ÏÖ
¶«ÄÏ´óѧ ÖúÀí½ÌÊÚ
ÍõÃÈ ²©Ê¿
10:20-11:00
¿ª·Åʽ֪ʶͼÆ×µÄ×Ô¶¯¹¹½¨¼¼Êõ
¹þ¶û±õ¹¤Òµ´óѧ ½ÌÊÚ/²©Ê¿Éúµ¼Ê¦
ÁõÃú ²©Ê¿
11:00-11:40
֪ʶͼÆ×µÄ¹¹½¨Ó뻥ÁªÍø³¡¾°ÏµÄÓ¦ÓÃ
ÌÚѶ¿Æ¼¼£¨Î¢ÐÅÊÂҵȺ£©¸ß¼¶Ó¦ÓÃÑо¿Ô±
µ¥×Ó·Ç
11:40-12:20
¸´ÔÓÓᄈϵÄʵÌå¹ØÏµ³éÈ¡
ºþÄÏʦ·¶´óѧ ÖúÀí½ÌÊÚ
ÔøµÀ½¨ ²©Ê¿

ÂÛ̳Ãû³Æ
֪ʶͼÆ×ÓëÖÇÄÜÍÆ¼öÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-17:20
ÂÛ̳³öÆ·
Àî·ï÷ë ²©Ê¿ °¢Àï°Í°Í °¢ÀïСÃÛÖªÊ¶ÔÆËã·¨¸ºÔðÈË
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
֪ʶͼÆ×¸¨ÖúµÄÍÆ¼öϵͳ
˹̹¸£´óѧ ²©Ê¿ºó
Íõºèΰ ²©Ê¿
14:40-15:20
µçÉ̳£Ê¶Í¼Æ×¹¹½¨¼°ËÑË÷ÍÆ¼ö³¡¾°ÏµÄÓ¦ÓÃ
°¢Àï°Í°Í Ë㷨ר¼Ò
ÀîÇ¿ ²©Ê¿
15:20-16:00
֪ʶͼÆ×ÔÚÃÀÍÅÍÆ¼ö³¡¾°µÄÓ¦ÓÃ
ÃÀÍÅ Ë㷨ר¼Ò
ÕÅÃεÏ
16:00-16:40
ÕþÎñ֪ʶͼÆ×ÔÚËÑË÷ÖеÄÓ¦ÓÃ
°¢Àï°Í°Í ¸ß¼¶Ë㷨ר¼Ò
´÷½¡ ²©Ê¿
16:40-17:20
ÐÂÁãÊÛÁìÓò¶àģ̬֪ʶͼÆ×µÄ½¨ÉèÓëÓ¦ÓÃ
°¢Àï°Í°Í Ëã·¨¹¤³Ìʦ
Ðì¹úº£

ÂÛ̳Ãû³Æ
֪ʶͼÆ×ÓëÖÇÄÜÎÊ´ðÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-16:40
ÂÛ̳³öÆ·
³Â˧ СÃ× AIʵÑéÊÒ֪ʶͼÆ×ÍŶӸºÔðÈË
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
СÃ×С°®ÖÇÄÜÎÊ´ðϵͳ¸ÅÀÀ
СÃ׸߼¶Ëã·¨¹¤³Ìʦ
´úÎÄ ²©Ê¿
14:40-15:20
¿É¿ìËÙ¹æÄ£»¯µÄ֪ʶͼÆ×ÎÊ´ð
°¢Àï°Í°Í Ë㷨ר¼Ò
ÌÆ³Ê¹â
15:20-16:00
֪ʶÈںϵÄÎÊ´ð¼¼Êõ¼°Ó¦ÓÃ
°Ù¶È ×ÊÉîÑз¢¹¤³Ìʦ
·ëÐÀΰ
16:00-16:40
ÃÀÍŵ绰³¡¾°¶Ô»°½»»¥¼¼Êõʵ¼ù
ÃÀÍÅ ×ÊÉîË㷨ר¼Ò
³Â¼ûËÊ ²©Ê¿

ÂÛ̳Ãû³Æ
¹¤ÒµÖªÊ¶Í¼Æ×ÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-17:20
ÂÛ̳³öÆ·
»³±¦ÐË ²©Ê¿
»ªÎªÔÆ ÓïÒôÓïÒå´´ÐÂLab ¸±Ö÷ÈÎ
»ªÎªÔÆ ÖªÊ¶¼ÆËã Ê×ϯ¼Ü¹¹Ê¦
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
»ùÓÚ֪ʶͼÆ×µÄÆóҵ֪ʶ¼ÆËãÓëÓ¦ÓÃ
»ªÎª Ë㷨ר¼Ò
¶ÎÐÂÓî ²©Ê¿
14:40-15:20
¹¤Òµ³¡¾°ÖªÊ¶Í¼Æ×ÂäµØÊµÕ½
ÔÆÎʿƼ¼ NLPÑо¿Ôº¸ºÔðÈË
¶ÅÕñ¶«
15:20-16:00
֪ʶÖÇÄܼ¼ÊõÔÚµçÁ¦ÁìÓòÖеÄÂäµØÊµ¼ù
°¢ÀïÔÆ µçÁ¦ÖªÊ¶Í¼Æ×Ñз¢¸ºÔðÈË
Çñ½£ ²©Ê¿
16:00-16:40
Æóҵ֪ʶͼÆ×½â¾ö·½°¸ÖúÁ¦Æû³µ²úÒµÊý×Ö»¯Éý¼¶
±¡ÑÔÐÅÏ¢ AI¸ºÔðÈË
´Þ°²ñý ²©Ê¿

ÂÛ̳Ãû³Æ
½ðÈÚ֪ʶͼÆ×ÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-16:40
ÂÛ̳³öÆ·
ÀîÓæ ²©Ê¿ ìØ¼ò¿Æ¼¼ ÁªºÏ´´Ê¼ÈË
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
×ʹÜ֪ʶÖÐ̨-×ʹÜÁìÓò֪ʶͼÆ×µÄ¹¹½¨ºÍÓ¦ÓÃ
ìØ¼ò¿Æ¼¼ ÁªºÏ´´Ê¼ÈË
ÀîÓæ ²©Ê¿
14:40-15:20
֪ʶͼÆ×¸³ÄÜͶÐÐÖÇÄÜ»¯´´ÐÂ
ÎÄÒò»¥Áª CEO
±«½Ý ²©Ê¿
15:20-16:00
»ùÓÚ֪ʶͼÆ×µÄ½ðÈÚÓßÇé·çÏÕ·ÖÎö¼°×Ô¶¯Ñ§Ï°¼¼Êõ
µÚËÄ·¶Ê½ ×ÊÉîËã·¨Ñо¿Ô±
ÕÅÓÀì÷ ²©Ê¿
16:00-16:40
±£ÏÕ֪ʶ´óÄÔ-±£ÏÕÁìÓòµÄ֪ʶͼÆ×¹¹½¨ÒÔ¼°ÒµÎñ¸³ÄÜ
ƽ°²ÈËÊÙ Ë㷨ר¼Ò
½­Á¶öÎ

ÂÛ̳Ãû³Æ
Ò½ÁÆÖªÊ¶Í¼Æ×ÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-17:20
ÂÛ̳³öÆ·
ÄßÔ¨ ²©Ê¿ ƽ°²¿Æ¼¼ ¸±×ܹ¤³Ìʦ
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
»ùÓÚ֪ʶͼÆ×µÄÁÙ´²·çÏÕÆÀ¹À
»Ýÿ¿Æ¼¼ CTO
Íõʵ
14:40-15:20
ҽѧ֪ʶͼÆ×¹¹½¨ÓëÓ¦ÓÃ
Öйúҽѧ¿ÆÑ§ÔºÒ½Ñ§ÐÅÏ¢Ñо¿Ëù ¸±Ñо¿Ô±
Ëﺣϼ ²©Ê¿
15:20-16:00
ÈÚºÏ֪ʶÓëÊý¾ÝµÄÁÙ´²¾ö²ßÖ§³Ö
ƽ°²¿Æ¼¼£¨ÉîÛÚ£©ÓÐÏÞ¹«Ë¾ ×ÊÉîÈ˹¤ÖÇÄÜר¼Ò
ËïÐÐÖÇ ²©Ê¿
16:00-16:40
Éî¶ÈÓ¦ÓÃÇý¶¯µÄҽѧ֪ʶͼÆ×¹¹½¨
Õã½­Êý×ÖÒ½ÁÆÎÀÉú¼¼ÊõÑо¿Ôº Êý×Öҽѧ֪ʶÖÐÐÄÖ÷ÈÎ
ÐìÃÀÀ¼
16:40-17:20
֪ʶͼÆ×ʵÌå¹ØÏµ³éÈ¡·½·¨¼°Êµ¼ù
ÌÚѶÌìÑÜʵÑéÊÒ֪ʶͼÆ×ºÍNLP¸ºÔðÈË
³ÂêØ ²©Ê¿

ÂÛ̳Ãû³Æ
֪ʶͼÆ×ÓëÖÇÄÜ´´×÷ÂÛ̳
ÂÛ̳ʱ¼ä
03ÔÂ27ÈÕ£¬14:00-16:40
ÂÛ̳³öÆ·
Ö£ìǺ² °Ù¶È
·ÖÏíʱ¼ä
·ÖÏíÄÚÈÝ
14:00-14:40
»ùÓÚ֪ʶͼÆ×µÄÆû³µÓªÏúÎÄ´´×÷
ÖÇËÑÐÅÏ¢ Ê×ϯ¿ÆÑ§¼Ò
Ö£º£ÌÎ ²©Ê¿
14:40-15:20
°¢ÀïÎÄÓéÊÓÆµÖÇÄÜÉú²ú¼¼Êõʵ¼ù
°¢ÀïÎÄÓé Ë㷨ר¼Ò
ÌÀÐñ
15:20-16:00
֪ʶͼÆ×ÔÚÖÇÄÜ´´×÷ÖеÄÓ¦ÓÃ
°Ù¶È ×ÊÉîÑз¢¹¤³Ìʦ
²ÌÔ¶¿¡
16:00-16:40
ÀÖ¸®£ºÔ¤ÑµÁ·ÓïÑÔÄ£ÐÍÔÚÊ«´Ê¶ÔÁªÉú³ÉÖеÄÓ¦ÓÃ
»ªÎªÅµÑÇ·½ÖÛʵÑéÊÒ Ñо¿Ô±
ÁÎÒÚ ²©Ê¿
¨„ÈçºÎ²ÎÓ룿


5#
·¢±íÓÚ 2023-3-31 08:52:07 | Ö»¿´¸Ã×÷Õß À´×Ô£º ¹ã¶«¹ãÖÝ À´×Ô ¹ã¶«¹ãÖÝ
Õâ¿ÎÌâÓе㳬°àÁË

ÄúÐèÒªµÇ¼ºó²Å¿ÉÒÔ»ØÌû µÇ¼ | ×¢²á

±¾°æ»ý·Ö¹æÔò

¿ìËٻظ´ ·µ»Ø¶¥²¿ ·µ»ØÁбí
¸½½ü
µêÆÌ
΢ÐÅɨÂë²é¿´¸½½üµêÆÌ
άÐÞ
±¨¼Û
ɨÂë²é¿´ÊÖ»ú°æ±¨¼Û
ÐźÅÔª
¼þ²éѯ
µãλͼ AIάÐÞ
ÖúÊÖ



оƬËÑË÷

¿ìËٻظ´