ÂíÉÏ×¢²á£¬»ñÈ¡ÔĶÁ¾«»ªÄÚÈݼ°ÏÂÔØÈ¨ÏÞ
ÄúÐèÒª µÇ¼ ²Å¿ÉÒÔÏÂÔØ»ò²é¿´£¬Ã»ÓÐÕʺţ¿×¢²á
x
https://blog.csdn.net/Kaiyuan_sjtu/article/details/101841458×î½üÇ廪µÄTHUNLPÕûÀíÁËPre-trained Languge Model (PLM)Ïà¹ØµÄ¹¤×÷£ºPLMpapers£¬·Ç³£È«Ã棬ÏëÒªÁ˽â×îÐÂNLP·¢Õ¹µÄͬѧ²»Òª´í¹ý¡£±¾À´ÕâÆªÊÇ´òËãдһдKnowledge Graph + BERTϵÁй¤×÷µÄ£¬µ«ÊÇ×î½üÓÐÔÚ×ö֪ʶͼÆ×µÄһЩ¶«Î÷ËùÒÔ¾ÍÏÈÕûÀíÒ»ÏÂ**֪ʶ±íʾѧϰ(knowledge representation learning)**µÄÏà¹ØÄ£ÐÍ·¢Õ¹£¬ÕâÑùÎÒÃÇ¿´ºóÃæµÄpaperÒ²»áµÃÐÄÓ¦ÊÖһЩ¡£
1. A glance at Knowledge Representation LearningWhatÊ×ÏÈʲôÊDZíʾѧϰ£¿ÆäʵÎÒÃÇÔç¾ÍÔÚÆµ·±Ê¹ÓÃÁË£¬±ÈÈç´ÊÏòÁ¿embedding£¬ÕâÖÖ½«Ñо¿¶ÔÏóµÄÓïÒåÐÅÏ¢±íʾΪ³íÃܵÍάµÄʵֵÏòÁ¿µÄÐÎʽ¾Í½Ð±íʾѧϰ¡£ÓÐÁ˱íʾѧϰµÄ¶¨Ò壬ÄÇô֪ʶ±íʾѧϰ(KRL) ¾ÍÊÇÃæÏò֪ʶ¿âÖÐʵÌåºÍ¹ØÏµµÄ±íʾѧϰ£¬Í¨¹ý½«ÊµÌå»ò¹ØÏµÍ¶Ó°µ½µÍάÏòÁ¿¿Õ¼ä£¬Äܹ»ÊµÏÖ¶ÔʵÌåºÍ¹ØÏµµÄÓïÒåÐÅÏ¢µÄ±íʾ£¬¿ÉÒÔ¸ßЧµØ¼ÆËãʵÌå¡¢¹ØÏµ¼°ÆäÖ®¼äµÄ¸´ÔÓÓïÒ幨Áª¡£ WhyÄÇôΪʲô»áð³ö֪ʶ±íÊ¾Ñ§Ï°ÄØ£¿ - ÏÔÖøÌá¸ß¼ÆËãЧÂÊ¡£ ¼òµ¥µØ»ùÓÚͼËã·¨¼ÆËãʵÌå¼äµÄÓïÒåºÍÍÆÀí¹ØÏµ£¬Æä¼ÆË㸴ÔӶȸߡ¢¿ÉÀ©Õ¹ÐԲ¶ø±íʾѧϰµÃµ½µÄ·Ö²¼Ê½±íʾ£¬ÔòÄܹ»¸ßЧµØÊµÏÖÓïÒåÏàËÆ¶È¼ÆËãµÈ²Ù×÷¡£
- ÓÐЧ»º½âÊý¾ÝÏ¡Êè¡£ Ò»·½Ã潫ÿ¸ö¶ÔÏóͶӰµ½µÍάµÄ³íÃÜÏòÁ¿¿Õ¼ä£»ÁíÒ»·½ÃæÔÚͶӰ¹ý³ÌÖÐÒ²¿ÉÒÔ½èÓÃ¸ßÆµ¶ÔÏóµÄÓïÒåÐÅÏ¢°ïÖúµÍƵ¶ÔÏóµÄÓïÒå±íʾ£¬²¶»ñ³¤Î²·Ö²¼¡£
- ʵÏÖÒìÖÊÐÅÏ¢Èںϡ£ ½«²»Í¬À´Ô´µÄ¶ÔÏóͶӰµ½Í¬Ò»ÓïÒå¿Õ¼äÖУ¬¾ÍÄܹ»½¨Á¢Í³Ò»µÄ±íʾ¿Õ¼ä¡£
How½ÓÏÂÈ¥»á½éÉÜ֪ʶ±íʾѧϰµÄÖ÷Òª·½·¨¼°Ç°ÑؽøÕ¹£¬ÕâÒ²ÊDZ¾ÏµÁв©ÎĵÄÖØÒª¡£Ê×Ïȸø³öÕûÌ嶨Ò壺 ֪ʶ¿â±íʾΪ G=(E, R, S)£¬ÆäÖÐE = { e 1 , e 2 , ⋯ , e E } E={\{e_{1},e_{2}, \cdots, e_{E}\}}E={e1,e2,⋯,eE}ÊÇʵÌ弯ºÏ£¬R = { r 1 , r 2 , ⋯ , r R } R=\left\{r_{1}, r_{2}, \cdots, r_{R}\right\}R={r1,r2,⋯,rR}ÊǹØÏµ¼¯ºÏ£¬SÊÇÈýÔª×鼯ºÏ£¬±íʾΪ(h, r, t)
- »ùÓÚ¾àÀëµÄÄ£ÐÍ
- »ùÓÚ·ÒëµÄÄ£ÐÍ
- ÓïÒ寥ÅäÄ£ÐÍ
- Èں϶àÔ´ÐÅÏ¢µÄÄ£ÐÍ
- Ç°ÑØ½øÕ¹
paper list ref2. Distance-Based ModelsUM Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing(2012)
SELearning Structured Embeddings of Knowledge Bases(AAAI/2011)ÔÚ±¾ÎÄÖУ¬×÷ÕßÖ¸³öĿǰÒÑÓеÄ֪ʶ¿â¶¼ÊÇ»ùÓÚ²»Í¬µÄ¿ò¼Ü£¬Òò´ËºÜÄѽ«ËüÃÇÕûºÏÓ¦Óõ½Ò»¸öеÄϵͳÖС£µ«ÊÇ֪ʶ¿âÖдæÔÚ´óÁ¿µÄ½á¹¹»¯ºÍ×éÖ¯»¯µÄÊý¾Ý£¬Èç¹ûÄܹ»³ä·ÖÀûÓÃÆðÀ´½«»á¶ÔAIÁìÓò·Ç³£ÓаïÖú¡£ÓÚÊÇ×÷ÕßÃÇÌá³öÒ»ÖÖÄ£Ðͽ«ÈκÎ֪ʶ¿âÖеÄʵÌåºÍ¹ØÏµÇ¶Èëµ½Ò»¸ö¸üÁé»îµÄÁ¬ÐøÏòÁ¿¿Õ¼ä¡£Ç¶Èë¿ÉÒÔÈÏΪÊÇÒ»¸öÉñ¾ÍøÂ磬¸ÃÉñ¾ÍøÂçµÄÌØÊâ½á¹¹ÔÊÐí½«ÔʼÊý¾Ý½á¹¹¼¯³Éµ½ËùѧϰµÄ±íʾÖС£¸ü׼ȷµØËµ£¬¿¼Âǵ½ÖªÊ¶¿âÊÇÓÉÒ»×éʵÌåºÍËüÃÇÖ®¼äµÄ¹ØÏµ¶¨ÒåµÄ£¬¸ÃÄ£ÐÍΪÿ¸öʵÌ壨¼´Ò»¸öµÍάÏòÁ¿£©Ñ§Ï°Ò»¸öǶÈë(embedding)£¬ÎªÃ¿¸ö¹ØÏµ£¨¼´¾ØÕó£©Ñ§Ï°Ò»¸öÔËËã·û(operator)¡£ÁíÍ⣬ÔÚµÍάembedding¿Õ¼äʹÓúËÃܶȹÀ¼Æ¿ÉÒÔ¹ÀÁ¿¿Õ¼äµÄ¸ÅÂÊÃܶȣ¬ÕâÑù¿ÉÒÔÁ¿»¯ÊµÌåÖ®¼äµÄ¹ØÏµ´æÔÚ¿ÉÄÜÐÔ¡£ ½á¹¹±íʾ£¨Structured Embeddings£¬SE£©ÖÐÿ¸öʵÌåÓÃd ddάµÄÏòÁ¿±íʾ£¬ËùÓÐʵÌ屻ͶӰµ½Í¬Ò»¸öd ddάÏòÁ¿¿Õ¼äÖС£Í¬Ê±£¬SE»¹ÎªÃ¿¸ö¹ØÏµ¶¨ÒåÁËÁ½¸ö¾ØÕóM r , 1 , M r , 2 ¡Ê R d ¡Á d \boldsymbol{M}_{r, 1}, \boldsymbol{M}_{r, 2} \in \mathbb{R}^{d \times d}Mr,1,Mr,2¡ÊRd¡ÁdÓÃÓÚÈýÔª×éÖÐͷʵÌåºÍβʵÌåµÄͶӰ²Ù×÷¡£×îºóSEΪÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)¶¨ÒåÁËËðʧº¯Êý£ºf r ( h , t ) = ¨O M r , 1 l h − M r , 2 l t ¨O L 1 f_{r}(h, t)=\left|\boldsymbol{M}_{r, 1} \boldsymbol{l}_{h}-\boldsymbol{M}_{r, 2} \boldsymbol{l}_{t}\right|_{L_{1}}fr(h,t)=¨OMr,1lh−Mr,2lt¨OL1¶ÔÓÚÉÏÊöËðʧº¯Êý£¬ÎÒÃÇ¿ÉÒÔÀí½âΪͨ¹ýÁ½¸ö¹ØÏµ¾ØÕó½«Í·Î²Á½¸öʵÌåͶӰµ½Í¬Ò»¹ØÏµ¿Õ¼äÖУ¬È»ºóÔڸÿռäÖмÆËãÁ½Í¶Ó°ÏòÁ¿µÄ¾àÀë¡£¶øÕâ¸ö¾àÀëÔò·´Ó³ÁËͷβʵÌåÖ®¼äÔÚÌØ¶¨¹ØÏµÏµÄÓïÒåÏàËÆ¶È£¬ËûÃǵľàÀëԽСÔò±íÃ÷Ô½ÓпÉÄÜ´æÔÚÕâÖÖ¹ØÏµ¡£ SEÄ£ÐÍҪѧϰµÄ²ÎÊýÊÇʵÌåÏòÁ¿¾ØÕóE EE ºÍÁ½¸ö¹ØÏµ¾ØÕóR l h s R^{lhs}Rlhs¡¢R r h s R^{rhs}Rrhs£¬ÏÂÃæÊÇÄ£Ð͵ÄѵÁ·¹ý³Ì£º
¿ÉÒÔ¿´³öSEÄ£ÐͶÔͷβÁ½¸öʵÌåʹÓò»Í¬µÄ¾ØÕó½øÐÐͶӰ£¬ÐͬÐԽϲÍùÍùÎÞ·¨¾«È·¿Ì»Á½ÊµÌåÖ®¼äµÄÓïÒåÁªÏµ¡£ 3. Trans-Based ModelsTransE Translating Embeddings for Modeling Multi-relational Data(NIPS2013)TransEÊÇTransϵÁÐÄ£Ð͵ĿªÉ½Ö®×÷£¬Ò²ÊÇ֪ʶͼÆ×ÏòÁ¿±íʾµÄbaselineÄ£ÐÍ£¬ºóÃæ»á½éÉÜËüµÄºÜ¶à±äÌå¡£ÆäʵTransEµÄ˼ÏëºÜ¼òµ¥£¬ÎªÁ˽«ÊµÌåÓë¹ØÏµÇ¶Èëµ½µÍάµÄÏòÁ¿¿Õ¼ä£¬¶ÔÓÚ֪ʶ¿âÖеÄÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬ÈÏΪͷʵÌåµÄembedding¼ÓÉϹØÏµµÄembeddingÖ®ºóÓ¦¸ÃÊÇÓëβʵÌåµÄembedding·Ç³£½Ó½üµÄ¡£ÓÚÊÇ£¬¿ÉÒÔ½«¹ØÏµ¿´×öÊÇÁ½¸öʵÌåÖ®¼äµÄijÖÖÆ½ÒÆÏòÁ¿£¬ÈçÏÂͼ£º
°´ÕÕÉÏÃæµÄ˼·£¬¼´ÓÐÁËTransEÄ£Ð͵ÄËðʧº¯Êý£ºL = ¡Æ ( h , ℓ , t ) ¡Ê S ( h ¡ä , ℓ , t ¡ä ) ¡Ê S ( h , ℓ , t ) ¡ä [ ¦Ã + d ( h + ℓ , t ) − d ( h ¡ä + ℓ , t ¡ä ) ] + \mathcal{L}=\sum_{(h, \ell, t) \in S\left(h^{\prime}, \ell, t^{\prime}\right) \in S_{(h, \ell, t)}^{\prime}}\left[\gamma+d(\boldsymbol{h}+\ell, \boldsymbol{t})-d\left(\boldsymbol{h}^{\prime}+\ell, \boldsymbol{t}^{\prime}\right)\right]_{+}L=(h,ℓ,t)¡ÊS(h¡ä,ℓ,t¡ä)¡ÊS(h,ℓ,t)¡ä¡Æ[¦Ã+d(h+ℓ,t)−d(h¡ä+ℓ,t¡ä)]+Õâ¸öËðʧº¯ÊýÊÇ´øÓÐnegative samplingºÍmargin-based lossµÄ - negative sampling£ºS ( h , ℓ , t ) ¡ä = { ( h ¡ä , ℓ , t ) ¨O h ¡ä ¡Ê E } ¡È { ( h , ℓ , t ¡ä ) ¨O t ¡ä ¡Ê E } S_{(h, \ell, t)}^{\prime}=\left\{\left(h^{\prime}, \ell, t\right) | h^{\prime} \in E\right\} \cup\left\{\left(h, \ell, t^{\prime}\right) | t^{\prime} \in E\right\}S(h,ℓ,t)¡ä={(h¡ä,ℓ,t)¨Oh¡ä¡ÊE}¡È{(h,ℓ,t¡ä)¨Ot¡ä¡ÊE}±íʾ¸ºÑù±¾ÈýÔª×飬¹¹ÔìµÄ·½·¨Êǽ«SÖÐÿ¸öÈýÔª×éµÄͷʵÌå¡¢¹ØÏµºÍβʵÌåÆäÖÐÖ®Ò»Ëæ»úÌæ»»³ÉÆäËûµÄʵÌå»ò¹ØÏµ£¬×¢Òâÿ¸öÈýÔª×éÖ»ÄÜÍ¬Ê±Ìæ»»Ò»¸öÔªËØ¡£
- margin-based loss£ºÎªÁËÔöǿ֪ʶ±íʾµÄÇø·ÖÄÜÁ¦£¬²ÉÓÃÁË×î´ó¼ä¸ôµÄ·½·¨£¬¿ÉÒÔÀà±ÈSVRµÄËðʧº¯Êý¡£d ( h + ℓ , t ) d(\boldsymbol{h}+\ell, \boldsymbol{t})d(h+ℓ,t)±íʾÕýÑù±¾µÄ²»ÏàËÆµÃ·Ö£¬d ( h ¡ä + ℓ , t ¡ä ) d\left(\boldsymbol{h}^{\prime}+\ell, \boldsymbol{t}^{\prime}\right)d(h¡ä+ℓ,t¡ä)±íʾ¸ºÑù±¾µÄ²»ÏàʶµÃ·Ö£¬×îС»¯Õâ¸öËðʧº¯Êý¿ÉÒÔʹµÃÕýÑù±¾µÄµÃ·ÖÔ½À´Ô½¸ß¶ø¸ºÑù±¾µÄµÃ·ÖÔ½À´Ô½µÍ£¬²¢ÇÒÖ»ÓÐÁ½¸öµÃ·Ö²î¾à´óÓÚijһãÐÖµµÄʱºòloss²ÅΪ0¡£
×îÖÕÄ£ÐÍÕûÌåµÄѵÁ·¹ý³ÌÈçÏ£º
ËäÈ»TransE¼òµ¥ÓÐЧ£¬µ«ÈÔÈ»´æÔÚÒ»¸ö·Ç³£ÑÏÖØµÄÎÊÌ⣺²»Äܺܺô¦Àí¸´ÔÓ¹ØÏµ¡£¾Ù¸öÀõ×Ó£¬ÓÐÁ½¸öÈýÔª×é(ÃÀ¹ú£¬×Üͳ£¬°Â°ÍÂí)ºÍ(ÃÀ¹ú£¬ ×Üͳ£¬ ²¼Ê²)£¬Ê¹ÓÃTransEÄ£ÐͱíʾµÄ»°»áµÃµ½°Â°ÍÂíºÍ²¼Ê²µÄ±íʾÏòÁ¿·Ç³£½Ó½ü£¬ÉõÖÁÍêÈ«Ïàͬ¡£ Code Here TransHKnowledge Graph Embedding by Translating on Hyperplanes(AAAI2014)Ïà¶ÔÓÚ֮ǰµÄ֪ʶ±íʾģÐÍ£¬TransEÓÐÁ˺ܴóµÄ¸Ä½ø£¬µ«Êǵ±Ãæ¶Ô×Ô·´¹ØÏµ¡¢Ò»¶Ô¶à¡¢¶à¶ÔÒ»ÒÔ¼°¶à¶Ô¶àÕâÀิÔӵĹØÏµÊ±£¬¾ÍºÜÄÑ´¦ÀíºÃ£¨»áʹµÃһЩ²»Í¬µÄʵÌå¾ßÓÐÏàͬ»òÕßÏà½üµÄÏòÁ¿±íʾ£©¡£ÓÚÊÇ×÷ÕßÌá³öTransHÄ£ÐÍ£¬ÔÚ±£Ö¤Ä£ÐÍcomplexityºÍefficiencyµÄͬʱ£¬½â¾öÉÏÊö¸´ÔÓ¹ØÏµµÄ±íʾ¡£ Ä£ÐÍTransHÄ£Ð͵ÄÖ÷Ҫ˼ÏëÊǶÔÿһ¸ö¹ØÏµ¶¨ÒåÁ½¸öÏòÁ¿£º³¬Æ½Ãæw r w_{r}wrºÍ¹ØÏµÏòÁ¿d r d_{r}dr¡£¶ÔÓÚÈÎÒâÒ»¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬h hhºÍt ttÔÚ³¬Æ½ÃæÉϵÄͶӰ·Ö±ðΪh ¡Í h_{\perp}h¡ÍºÍt ¡Í t_{\perp}t¡Í£¬Èç¹ûÊÇgolden triplet£¬Ôò´æÔÚh ¡Í + d r ¡Ö t ¡Í h_{\perp}+d_{r} \approx t_{\perp}h¡Í+dr¡Öt¡Í¡£¿´ÏÂͼ¿ÉÄÜ»á¸üÇå³þһЩ£º
Ëðʧº¯ÊýÓëTransEµÄÒ»Ñù£ºL = ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ( h , r , t ) ¡ä [ f r ( h , t ) + ¦Ã − f r ¡ä ( h ¡ä , t ¡ä ) ] + \mathcal{L}=\sum_{(h, r, t) \in \Delta\left(h^{\prime}, r^{\prime}, t^{\prime}\right) \in \Delta_{(h, r, t)}^{\prime}}\left[f_{r}(\mathbf{h}, \mathbf{t})+\gamma-f_{r^{\prime}}\left(\mathbf{h}^{\prime}, \mathbf{t}^{\prime}\right)\right]_{+}L=(h,r,t)¡Ê¦¤(h¡ä,r¡ä,t¡ä)¡Ê¦¤(h,r,t)¡ä¡Æ[fr(h,t)+¦Ã−fr¡ä(h¡ä,t¡ä)]+f r ( h , t ) = ¡Î ( h − w r ⊤ h w r ) + d r − ( t − w r ⊤ t w r ) ¡Î 2 2 f_{r}(\mathbf{h}, \mathbf{t})=\left\|\left(\mathbf{h}-\mathbf{w}_{r}^{\top} \mathbf{h} \mathbf{w}_{r}\right)+\mathbf{d}_{r}-\left(\mathbf{t}-\mathbf{w}_{r}^{\top} \mathbf{t} \mathbf{w}_{r}\right)\right\|_{2}^{2}fr(h,t)=¡Î¡Î(h−wr⊤hwr)+dr−(t−wr⊤twr)¡Î¡Î22h ¡Í = h − w r ⊤ h w r , t ¡Í = t − w r ⊤ t w r \mathbf{h}_{\perp}=\mathbf{h}-\mathbf{w}_{r}^{\top} \mathbf{h} \mathbf{w}_{r}, \quad \mathbf{t}_{\perp}=\mathbf{t}-\mathbf{w}_{r}^{\top} \mathbf{t} \mathbf{w}_{r}h¡Í=h−wr⊤hwr,t¡Í=t−wr⊤twrÄ£ÐÍÕûÌåѵÁ·¹ý³ÌҲͬTransEÒ»Ñù£¬ÕâÀï¾Í²»ÔÙ׸Êö¡£ ¸º²ÉÑù²ßÂÔ²»Í¬ÓÚTransEÄ£ÐÍÖеÄËæ»úÌæ»»Í·ÊµÌåºÍβʵÌåÖ®Ò»×÷Ϊ¸ºÑù±¾µÄ·½·¨£¬ÔÚTransHÖÐÖ¸³ö£º However, as a real knowledge graph is often far from completed, this way of randomly sampling may introduce many false negative labels into training.
ÓÚÊÇ£¬ÔÚÌæ»»Í·ÊµÌå»òÕßβʵÌåµÄʱºò¿¼ÂÇÁËÒ»¸ö²ÉÑù¸ÅÂÊ£¬t p h t p h + h p t \frac{t p h}{t p h+h p t}tph+hpttphµÄ¸ÅÂÊÌæ»»Í·ÊµÌ壬h p t t p h + h p t \frac{h p t}{t p h+h p t}tph+hpthptµÄ¸ÅÂÊÌæ»»Î²ÊµÌ壬ÆäÖÐt p h tphtphΪÿ¸öͷʵÌå¶ÔӦβʵÌåµÄƽ¾ùÊýÁ¿£¬h p t hpthptΪÿ¸öβʵÌå¶ÔӦͷʵÌåµÄƽ¾ùÊýÁ¿¡£Ò²¾ÍÊÇ˵£¬¶ÔÓÚÒ»¶Ô¶àµÄ¹ØÏµ£¬¸ü´óµÄ¸ÅÂÊÌæ»»Í·ÊµÌ壻¶ÔÓÚ¶à¶ÔÒ»µÄ¹ØÏµ£¬¸ü´ó¸ÅÂÊÌæ»»Î²ÊµÌå¡£ Code Here TransR Learning Entity and Relation Embeddings for Knowledge Graph Completion(AAAI2015)Ç°Ãæ½éÉܵÄTransEºÍTransH¶¼ÊǼÙÉèÈýÔª×éµÄʵÌåºÍ¹ØÏµÔÚͬһÓïÒå¿Õ¼äÖе쬾¡¹ÜÔÚTransHÖвÉÓÃÁ˹ØÏµ³¬Æ½ÃæµÄ²ßÂÔ£¬µ«ÓÉÓÚʵÌåºÍ¹ØÏµÊÇÍêÈ«²»Í¬µÄ£¬Ã¿Ò»¸öʵÌå¿ÉÄÜ»áÓжà¸öaspect£¬¼´ÊÇÊÇͬһ¸öʵÌåÔÚ²»Í¬µÄ¹ØÏµÏ¹Ø×¢µÄ¿ÉÄÜÊÇÍêÈ«²»Ïà¹ØµÄaspect£¬Òò´Ë֮ǰµÄÄ£ÐÍ»¹ÊDz»×ãÒÔ׼ȷµØ±íʾknowledge graph¡£ ÓÚÊÇ£¬ÔÚ±¾ÎÄÖÐ×÷ÕßÌá³öÒ»ÖÖÐÂÄ£ÐÍTransR£¬Æä˼Ïë¾ÍÊǽ«ÊµÌåºÍ¹ØÏµµÄ±íʾ¿Õ¼äÇø·Ö¿ªÀ´£¬ÊµÌåÓÐentity space£¬¹ØÏµÓÐrelation space£¬ÔÚ¼ÆËãʱͨ¹ýÒ»¸öͶÉ侨ÕóM r M_{r}Mr½«ÊµÌåÓ³Éäµ½¹ØÏµ¿Õ¼ä½øÐмÆË㡣Ͷ Ó° ¹ý ³Ì £º h r = h M r , t r = t M r ͶӰ¹ý³Ì£º\mathbf{h}_{r}=\mathbf{h} \mathbf{M}_{r}, \quad \mathbf{t}_{r}=\mathbf{t} \mathbf{M}_{r}ͶӰ¹ý³Ì£ºhr=hMr,tr=tMr´ò ·Ö º¯ Êý £º f r ( h , t ) = ¡Î h r + r − t r ¡Î 2 2 ´ò·Öº¯Êý£º f_{r}(h, t)=\left\|\mathbf{h}_{r}+\mathbf{r}-\mathbf{t}_{r}\right\|_{2}^{2}´ò·Öº¯Êý£ºfr(h,t)=¡Îhr+r−tr¡Î22Ëð ʧ º¯ Êý £º L = ¡Æ ( h , r , t ) ¡Ê S ( h ¡ä , r , t ¡ä ) ¡Ê S ¡ä max ( 0 , f r ( h , t ) + ¦Ã − f r ( h ¡ä , t ¡ä ) ) Ëðʧº¯Êý£ºL=\sum_{(h, r, t) \in S\left(h^{\prime}, r, t^{\prime}\right) \in S^{\prime}} \max \left(0, f_{r}(h, t)+\gamma-f_{r}\left(h^{\prime}, t^{\prime}\right)\right)Ëðʧº¯Êý£ºL=(h,r,t)¡ÊS(h¡ä,r,t¡ä)¡ÊS¡ä¡Æmax(0,fr(h,t)+¦Ã−fr(h¡ä,t¡ä))
´ËÍ⣬²»½ö½öʵÌåÓжà¸öaspect£¬¶ÔÓÚ¹ØÏµ£¬Ò²¿ÉÄÜ´æÔÚ¶àÒåÐÔ£¬±ÈÈç¹ØÏµ£¨location location contains£©Æäʵ°üº¬country-city¡¢country-university¡¢continent-countryµÈ¶àÖÖº¬Ò塣Ϊ´Ë£¬×÷ÕßÃÇÌá³öCTransR£¬¼´Cluster-based TransR£¬¶Ôͬһ¹ØÏµÏµIJ»Í¬ÊµÌå¶Ô½øÐоÛÀಢѧϰµ½¹ØÏµÔÚ²»Í¬¾ÛÀà´ØµÄ±íʾ¡£¾ßÌå×ö·¨ÊÇ - ÀûÓÃTransEѵÁ·( h , r , t ) (h, r, t)(h,r,t)ÈýÔª×é
- ÀûÓÃvector offset ( h − t ) (h-t)(h−t)½øÐоÛÀà
- ¶ÔÿһÀàµÄ×Ó¹ØÏµ¶¼Ñ§Ï°µ½Ò»¸ö±ä»»¾ØÕóM r M_{r}MrºÍ±íʾÏòÁ¿r c r_{c}rcf r ( h , t ) = ¡Î h r , c + r c − t r , c ¡Î 2 2 + ¦Á ¡Î r c − r ¡Î 2 2 f_{r}(h, t)=\left\|\mathbf{h}_{r, c}+\mathbf{r}_{c}-\mathbf{t}_{r, c}\right\|_{2}^{2}+\alpha\left\|\mathbf{r}_{c}-\mathbf{r}\right\|_{2}^{2}fr(h,t)=¡Îhr,c+rc−tr,c¡Î22+¦Á¡Îrc−r¡Î22
Code Here TransDKnowledge graph embedding via dynamic mapping matrix(ACL2015)ÎÄÕÂÊ×ÏÈÖ¸³öÁËTransRµÄÈý¸öÎÊÌ⣺ - ÔÚTransRÖУ¬¶ÔÓÚÌØ¶¨¹ØÏµ£¬ËùÓÐʵÌå¹²ÏíͬһӳÉ侨Õó¡£µ«ÊÇʵ¼ÊÇé¿öͷβʵÌå¿ÉÄÜÊôÓÚ²»Í¬·¶³ë£¬ÀýÈç(ÃÀ¹ú£¬×Üͳ£¬ÌØÀÊÆÕ)Õâ¸öÈýÔª×éÖУ¬ÃÀ¹úºÍÌØÀÊÆÕ¾Í²»ÊÇÏàͬ·¶³ëµÄʵÌ壬Òò´ËÓ¦¸Ã²ÉÓò»Í¬µÄÓ³É侨Õó£»
- ͶӰÔËËãÊÇʵÌåÓë¹ØÏµµÄ½»»¥¹ý³Ì£¬Ó³É侨Õó½öÓɹØÏµÈ·¶¨ÊDz»ºÏÀíµÄ£»
- ¾ØÕóÏòÁ¿³Ë·¨ÔËËãÁ¿´ó£¬µ±¹ØÏµÊý´óʱ£¬¾ØÕóÏòÁ¿³Ë·¨µÄ²ÎÊýÒ²±ÈTransEºÍTransH¶à¡£
»ùÓÚ´Ë£¬×÷ÕßÃÇÌá³öÒ»ÖÖ»ùÓÚ¶¯Ì¬Ó³É侨ÕóµÄTransDÄ£ÐÍ¡£¶ÔÓÚÿ¸öÈýÔª×é( h , r , t ) (h, r, t)(h,r,t)£¬ÆäÖÐÿ¸öÔªËØ¶¼ÓÐÁ½ÖÖÏòÁ¿±íʾ£¬Ò»ÖÖÊǹ¹½¨¶¯Ì¬Ó³É侨ÕóÏòÁ¿( h p , r p , t p ) (h_{p}, r_{p}, t_{p})(hp,rp,tp)£»ÁíÍâÒ»ÖÖÊÇÓÃÓÚ×ÔÉíʵÌå/¹ØÏµÓïÒå±íʾ( h , r , t ) (\bold h, \bold r, \bold t)(h,r,t)¡£Ê×ÏÈÊÇÀûÓÃͷβʵÌåµÄÓ³ÉäÏòÁ¿¹¹½¨Ó³É侨Õó£ºM r h = r p h p ⊤ + I m ¡Á n M r t = r p t p ⊤ + I m ¡Á n MrhMrt=rphp⊤+Im¡Án=rptp⊤+Im¡Án½Ó×Åͨ¹ý¸÷×ÔµÄÓ³É侨Õó½«ÊµÌåͶӰµ½¹ØÏµ¿Õ¼ä£ºh ¡Í = M r h h , t ¡Í = M r t t \mathbf{h}_{\perp}=\mathbf{M}_{r h} \mathbf{h}, \quad \mathbf{t}_{\perp}=\mathbf{M}_{r t} \mathbf{t}h¡Í=Mrhh,t¡Í=MrttÕûÌåµÄ´ò·Öº¯ÊýºÍËðʧº¯ÊýÒÔ¼°ÑµÁ·¹ý³Ì¶¼¸ú֮ǰµÄÄ£ÐÍÒ»Ñù¡£
Code Here TranSparse Knowledge Graph Completion with Adaptive Sparse Transfer Matrix(AAAI2016)֮ǰµÄTransϵÁÐÄ£ÐͶ¼ºöÂÔÁË֪ʶ±íÊ¾ÃæÁÙµÄÁ½¸öÎÊÌ⣺ - Òì¹¹ÐÔ(heterogeneous)£º²»Í¬¹ØÏµÁ¬½ÓµÄʵÌå¶ÔÊýÁ¿²î±ð¾Þ´ó
- ²»Æ½ºâÐÔ(imbalanced)£ºÍ¬Ò»¹ØÏµÁ´½ÓµÄͷʵÌåºÍβʵÌåÊýÁ¿²î±ð¾Þ´ó£¬ÀýÈç¶ÔÓÚ¹ØÏµÐÔ±ð£¬Í·ÊµÌåµÄÊýÁ¿ºÜ¶à£¨¡®Ð¡Ã÷¡¯¡®Ð¡»¨¡¯etc£©£¬¶ø¶ÔÓÚβʵÌå½ö½öÖ»ÓÐÁ½¸ö£¨¡®ÄС¯¡®Å®¡¯£©
Èç¹ûʹÓÃͬһģÐÍÀ´´¦ÀíËùÓÐÇé¿öµÄ»°£¬Ôò¿ÉÄÜÓÉÓÚÒì¹¹ÐÔµ¼Ö¶ÔÓÚ¸´ÔÓ¹ØÏµ£¨Á´½ÓÊýÁ¿¶à£©Ç·ÄâºÏ£¬¶Ô¼òµ¥¹ØÏµ£¨Á´½ÓÊýÁ¿ÉÙ£©¹ýÄâºÏ¡£ÎªÁ˽â¾öÒì¹¹ÐÔ£¬×÷ÕßÌá³öTranSparseÄ£ÐÍÓÃ×ÔÊÊÓ¦µÄÏ¡Êè¾ØÕó´úÌæÒ»°ãµÄÓ³É侨Õó¡£ TranSparse(share)ΪÁ˽â¾öÒì¹¹ÐÔÎÊÌ⣬TranSparse½«transfer matrixÉèÖÃΪ×ÔÊÊÓ¦µÄÏ¡Êè¾ØÕ󣬶ÔÓÚ¸´ÔÓ¹ØÏµ£¬ÎÒÃÇÐèÒª¸ü¶àµÄ²ÎÊýȥѧϰÆäÖаüº¬µÄÐÅÏ¢£¬ËùÒÔtransfer matrixµÄÏ¡Êè¶È»á±È½ÏµÍ£¬¼´Óиü¶àµÄÔªËØ²»Îª0£»¶ø¶ÔÓÚ¼òµ¥µÄ¹ØÏµÔòÇ¡ºÃÏà·´¡£¶øÕâÀïÏ¡Êè¶ÈÓÉ¦È r \theta_{r}¦Èr¶¨Ò壺¦È r = 1 − ( 1 − ¦È min ) N r / N r ∗ \theta_{r}=1-\left(1-\theta_{\min }\right) N_{r} / N_{r^{*}}¦Èr=1−(1−¦Èmin)Nr/Nr∗ÆäÖУ¬¦È m i n \theta_{min}¦ÈminÊÇÒ»¸ö0-1Ö®¼äµÄ×îСϡÊè¶È³¬²Î£¬N r N_{r}Nr±íʾ¹ØÏµr rrÁ´½ÓµÄʵÌå¶ÔÊýÁ¿£¬N r ∗ N_{r^{*}}Nr∗±íʾÆäÖÐÁ´½ÓµÄ×î´óÖµ¡£ TranSparse(share)ÕâÀïûÓп¼ÂDz»Æ½ºâÐÔ£¬ËùÒÔ¶ÔÓÚͷβʵÌåµÄmapping¹ý³ÌÊÇÒ»ÑùµÄ£ºh p = M r ( ¦È r ) h , t p = M r ( ¦È r ) t \mathbf{h}_{p}=\mathbf{M}_{r}\left(\theta_{r}\right) \mathbf{h}, \quad \mathbf{t}_{p}=\mathbf{M}_{r}\left(\theta_{r}\right) \mathbf{t}hp=Mr(¦Èr)h,tp=Mr(¦Èr)t TranSparse(separate)ΪÁ˽â¾ö²»Æ½ºâÐÔÎÊÌ⣬ÕâÀï¸üϸÖµضÔͷʵÌåºÍβʵÌåÉèÖÃÁ˲»Í¬µÄtransfer matrix£º¦È r l = 1 − ( 1 − ¦È min ) N r l / N r ∗ l ∗ ( l = h , t ) \theta_{r}^{l}=1-\left(1-\theta_{\min }\right) N_{r}^{l} / N_{r^{*}}^{l^{*}} \quad(l=h, t)¦Èrl=1−(1−¦Èmin)Nrl/Nr∗l∗(l=h,t)h p = M r h ( ¦È r h ) h , t p = M r t ( ¦È r t ) t \mathbf{h}_{p}=\mathbf{M}_{r}^{h}\left(\theta_{r}^{h}\right) \mathbf{h}, \quad \mathbf{t}_{p}=\mathbf{M}_{r}^{t}\left(\theta_{r}^{t}\right) \mathbf{t}hp=Mrh(¦Èrh)h,tp=Mrt(¦Èrt)t Ä£ÐÍѵÁ·Á½Õߣ¨shareºÍseparate£©µÄ´ò·Öº¯Êý¶¼ÊÇ£ºf r ( h , t ) = ¡Î h p + r − t p ¡Î ℓ 1 / 2 2 f_{r}(\mathbf{h}, \mathbf{t})=\left\|\mathbf{h}_{p}+\mathbf{r}-\mathbf{t}_{p}\right\|_{\ell_{1 / 2}}^{2}fr(h,t)=¡Îhp+r−tp¡Îℓ1/22L = ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r , t ) ¡Ê ¦¤ ¡ä [ ¦Ã + f r ( h , t ) − f r ( h ¡ä , t ¡ä ) ] + L=\sum_{(h, r, t) \in \Delta\left(h^{\prime}, r, t\right) \in \Delta^{\prime}}\left[\gamma+f_{r}(\mathbf{h}, \mathbf{t})-f_{r}\left(\mathbf{h}^{\prime}, \mathbf{t}^{\prime}\right)\right]_{+}L=(h,r,t)¡Ê¦¤(h¡ä,r,t)¡Ê¦¤¡ä¡Æ[¦Ã+fr(h,t)−fr(h¡ä,t¡ä)]+
Code Here TransM Transition-based knowledge graph embedding with relational mapping properties(2014)TransMÒ²ÊÇΪÁ˽â¾öTransEÖ»ÄÜ´¦ÀíÒ»¶ÔÒ»¹ØÏµµÄÎÊÌ⣬¶ÔÓÚ´æÔÚ¶àÖÖÑ¡ÔñµÄÒ»·½¸øÁ˸ü¶àµÄ×ÔÓɶȣ¬¼´h + r ¡Ö t h+r \approx th+r¡Öt£¬ÈçÏÂͼ
¾ßÌå×ö·¨ÊÇÔڵ÷ֺ¯ÊýµÄÇ°Ãæ¼ÓÉÏÁËÈ¨ÖØw r w_{r}wrw r = 1 log ( h r p t r + t r p h r ) w_{r}=\frac{1}{\log \left(h_{r} p t_{r}+t_{r} p h_{r}\right)}wr=log(hrptr+trphr)1ÆäÖÐh r p t r h_{r}pt_{r}hrptr±íʾβʵÌå¶ÔÓ¦µÄͷʵÌåÊýÁ¿(heads per tail)£¬t r p h r t_{r}ph_{r}trphrͬÀí¡£´ò ·Ö º¯ Êý £º f r ( h , t ) = w r ¡Î h + r − t ¡Î L 1 / L 2 ´ò·Öº¯Êý£º f_{r}(h, t)=w_{\mathbf{r}}\|\mathbf{h}+\mathbf{r}-\mathbf{t}\|_{L_{1} / L_{2}}´ò·Öº¯Êý£ºfr(h,t)=wr¡Îh+r−t¡ÎL1/L2 ManiFoldE From One Point to A Manifold: Knowledge Graph Embedding For Precise Link Prediction(IJCAI2016)×÷ÕßÖ¸³öĿǰÒÑÓеÄÑо¿¶¼ÎÞ·¨ºÜºÃµØ½â¾ö¾«×¼Á´½ÓÔ¤²â(Precise Link Prediction)£¬Ö÷ÒªÊÇÓÐÁ½¸öÎÊÌ⣺ - ill-posed algebraic problem£ºÖ¸Ò»¸ö·½³Ì×éÖеķ½³Ìʽ¸öÊýÔ¶´óÓÚ±äÁ¿¸öÊý£¬Õâ»áµ¼ÖÂÇóµÃµÄ½â¾³£ÊDz»¾«È·ÇÒ²»Îȶ¨µÄ¡£Ö®Ç°µÄ·ÒëÄ£ÐͶ¼ÊÇ»ùÓÚh r + r = t r \mathbf{h}_{\mathbf{r}}+\mathbf{r}=\mathbf{t}_{\mathbf{r}}hr+r=tr£¬Èç¹ûÈýÔª×éµÄÊýÁ¿ÎªT TT£¬embeddingµÄά¶ÈΪd dd£¬ ÔòÒ»¹²ÓÐT ∗ d T*dT∗d¸ö·½³Ì£¬¶øËùÐèҪѧϰµÄ±äÁ¿Ò»¹²ÓÐ( E + R ) ∗ D (E+R)*D(E+R)∗D¸ö£¬ÓÉÓÚT > > ( E + R ) T>>(E+R)T>>(E+R)£¬ÄÇôÕâÀàÄ£ÐÍÓÉÓÚill-posed algebraic problemÎÞ·¨¸ø³ö¾«×¼Á´½ÓÔ¤²â£»
- adopting an overstrict geometric form£ºTransE¹ýÓÚÑϸñµÄÏÞÖÆÊ¹µÃÁ´½ÓÔ¤²âµÃµ½µÄ»ù±¾¶¼ÎªÒ»¸öµã£¬Õâ¶ÔÓÚ¶à¶Ô¶à¹ØÏµÏÔÈ»ÊDz»ÕýÈ·µÄ¡£ËäÈ»ÔÚ֮ǰÓÐTransH£¬ TransRµÈÄ£ÐͶԴ˽øÐÐÓÅ»¯£¬µ«Êǽ«¹ØÏµÓ³Éäµ½ÁíÍâÒ»¸ö×Ó¿Õ¼äºóÈÔÈ»»á´æÔÚ¸ÃÎÊÌâ¡£
ΪÁ˽â¾öÉÏÊöÁ½¸öÎÊÌ⣬×÷ÕßÌá³öÒ»ÖÖ»ùÓÚÁ÷ÐεÄÄ£ÐÍ£¬½«Ô¼Êøh r + r = t r \mathbf{h}_{\mathbf{r}}+\mathbf{r}=\mathbf{t}_{\mathbf{r}}hr+r=tr½øÐзſíM ( h , r , t ) = D r 2 \mathcal{M}(\mathbf{h}, \mathbf{r}, \mathbf{t})=D_{r}^{2}M(h,r,t)=Dr2ÆäÖÐM \mathcal{M}MÊÇÁ÷Ðκ¯ÊýM ( h , r , t ) = ¡Î h + r − t ¡Î l 2 M(h, r, t)=\|h+r-t\|_{l 2}M(h,r,t)=¡Îh+r−t¡Îl2ÒÔ( h , r , ∗ ) (h, r, *)(h,r,∗)ΪÀý£¬ËùÓкÏÊʵÄβʵÌå¶¼·Ö²¼ÔÚ¸ßάÁ÷ÐÎÉÏ£¬¾Ù¸öÀõ×Ó£¬M \mathcal{M}MÊÇÒ»¸ö¸ßάÇòÌ壬ÔòËùÓеÄβʵÌå¶¼ÔÚÒÔh + t h+th+tΪÇòÐÄ£¬ÒÔD r D_{r}DrΪ°ë¾¶µÄÇòÃæÉÏ¡£ ´ò ·Ö º¯ Êý £º f ( h , r , t ) = ¡Î M ( h , r , t ) − D r 2 ¡Î l 1 / 2 ´ò·Öº¯Êý£ºf(h, r, t)=\left\|M(h, r, t)-D_{r}^{2}\right\|_{l 1 / 2}´ò·Öº¯Êý£ºf(h,r,t)=¡Î¡ÎM(h,r,t)−Dr2¡Î¡Îl1/2Ä¿ ±ê º¯ Êý £º L = ¡Æ ( h , r , t ) ¡Æ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ¡ä [ f r ¡ä ( h ¡ä , t ¡ä ) − f r ( h , t ) + ¦Ã ] + Ä¿±êº¯Êý£º\mathcal{L}=\sum_{(h, r, t)} \sum_{\left(h^{\prime}, r^{\prime}, t^{\prime}\right) \in \Delta^{\prime}}\left[f_{r}^{\prime}\left(h^{\prime}, t^{\prime}\right)-f_{r}(h, t)+\gamma\right]_{+}Ä¿±êº¯Êý£ºL=(h,r,t)¡Æ(h¡ä,r¡ä,t¡ä)¡Ê¦¤¡ä¡Æ[fr¡ä(h¡ä,t¡ä)−fr(h,t)+¦Ã]+ Code Here TransF Knowledge Graph Embedding by Flexible Translation(2016)TransFÌá³öÖ÷ÒªÊÇΪÁ˽â¾öTransEµÄÒ»¶ÔÒ»¹ØÏµÎÊÌ⣬ËäÈ»ÔÚ֮ǰÓÐTransHÌá³ö½â¾ö˼·£¬µ«ÊÇÒýÈëÁ˸ü¶àµÄ²ÎÊýÒÔ¼°¸ü´óµÄ¸´ÔÓ¶È¡£ÓÚÊÇTransF¾ÍÊÇΪÁ˽â¾öÒ»¶Ô¶à¶à¶ÔÒ»ÒÔ¼°¶à¶Ô¶à¹ØÏµ£¬Í¬Ê±ÓÖ²»Ôö¼Ó²ÎÊý¡£¾ßÌå¾ÍÊǽ«TransEµÄÏÞÖÆÌõ¼þh + r ¡Ö t \mathbf{h}+\mathbf{r} \approx \mathbf{t}h+r¡Öt·Å¿íΪh + r ¡Ö ¦Á t \mathbf{h}+\mathbf{r} \approx \alpha \mathbf{t}h+r¡Ö¦Át£¬ÈçÏÂͼ
µÃ·Öº¯ÊýͬʱºâÁ¿ÁËh + t h+th+tºÍt tt£¬t − h t-ht−hºÍh hhµÄ·½Ïò£ºf ( h , r , t ) = ( h + r ) T t + ( t − r ) T h f(h, r, t)=(h+r)^{T} t+(t-r)^{T} hf(h,r,t)=(h+r)Tt+(t−r)Th TransA TransA: An Adaptive Approach for Knowledge Graph Embedding(2015)×÷ÕßÊ×ÏÈÌá³öÁËÁ½¸öTransEÄ£Ð͵IJ»×㣺 - loss metric£ºTransEµÄloss metricΪ¡Î h + r − t ¡Î 2 2 \|\mathbf{h}+\mathbf{r}-\mathbf{t}\|_{2}^{2}¡Îh+r−t¡Î22£¬ÊÇÒ»ÖÖÅ·ÊϾàÀëµÄ¼ÆË㣬Æä¶ÔÓ¦µÄͼÐÎÊÇÒ»¸öÔ²¡£ÓÉÓÚÕâÖÖ¼òµ¥µÄloss metricµ¼Ö²»Äܺܺô¦Àí¸´ÔӵĹØÏµ£¨ÈçÒ»¶Ô¶à¡¢¶à¶ÔÒ»µÈ£©¡£ÂÛÎÄÖиø³öÒ»¸öÏêϸ°¸Àý£¬´ÓÏÂͼ¿ÉÖªÀ¶É«²¿·ÖΪÕýÀý£¬ºìÉ«²¿·ÖΪ¸ºÀý£¬TransE Ä£ÐÍ»®·Ö´íÁËÆß¸öµã¡£¶ø±¾ÎÄÌá³öÁËÒ»ÖÖ»ùÓÚÂíÊϾàÀëµÄ TransA Ä£ÐÍ£¬Æä PCA ½µÎ¬Í¼ÐζÔÓ¦µÄÊÇÒ»¸öÍÖÔ²£¬¸ÃÄ£ÐÍÖ»·Ö´íÁËÈý¸öµã¡£
- identical dimension£ºTransEµÈ֮ǰµÄÄ£Ð͵ȼ۵ضԴýÏòÁ¿ÖеÄÿһά¶È£¬µ«ÊÇʵ¼ÊÉϸ÷¸öά¶ÈµÄÖØÒª¶ÈÊDz»ÏàͬµÄ£¬ÓÐЩά¶ÈÊÇÓÐ×÷Óõģ¬ÓÐЩά¶ÈÈ´ÊÇÔëÒô¡£»¹ÊÇÒÔÂÛÎÄÖеÄÀõ×Ó£¬¶ÔÓÚ¹ØÏµHasPartÀ´Ëµ£¬×ó±ßµÄTransEÄ£Ð͸ù¾ÝÅ·ÊϾàÀë¼ÆËãµÃ³ö(room, haspart, goniff)ÕâÑù´íÎóµÄÈýÔª×顣ͨ¹ý¶Ôx£¬yÖá½øÐзֽâÖ®ºó·¢ÏÖ£¬¹ØÏµHasPart»á¸ü¹Ø×¢ÓëxÖáÏà½üµÄʵÌå¡£TransAÄ£ÐÍΪ´ËÒýÈëÁ˶Ôÿһά¶ÈµÄ¼ÓȨ¾ØÕó¡£
Ä£ÐÍTransAÄ£ÐͶÔ֮ǰµÄ´ò·Öº¯Êý½øÐÐÁ˸Ľø£¬ÒýÈë¼ÓȨ¾ØÕóW r W_{r}Wr£ºf r ( h , t ) = ( ¨O h + r − t ¨O ) ⊤ W r ( ¨O h + r − t ¨O ) f_{r}(h, t)=(|\mathbf{h}+\mathbf{r}-\mathbf{t}|)^{\top} \mathbf{W}_{\mathbf{r}}(|\mathbf{h}+\mathbf{r}-\mathbf{t}|)fr(h,t)=(¨Oh+r−t¨O)⊤Wr(¨Oh+r−t¨O)²¢Í¨¹ýLDL¶ÔW r W_{r}Wr½øÐзֽ⣺W r = L r ⊤ D r L r \mathbf{W}_{\mathbf{r}}=\mathbf{L}_{\mathbf{r}}^{\top} \mathbf{D}_{\mathbf{r}} \mathbf{L}_{\mathbf{r}}Wr=Lr⊤DrLrÕûÀíºóµÃµ½×îÖյĴò·Öº¯Êý£ºf r = ( L r ¨O h + r − t ¨O ) ⊤ D r ( L r ¨O h + r − t ¨O ) f_{r}=\left(\mathbf{L}_{\mathbf{r}}|\mathbf{h}+\mathbf{r}-\mathbf{t}|\right)^{\top} \mathbf{D}_{\mathbf{r}}\left(\mathbf{L}_{\mathbf{r}}|\mathbf{h}+\mathbf{r}-\mathbf{t}|\right)fr=(Lr¨Oh+r−t¨O)⊤Dr(Lr¨Oh+r−t¨O)ѵÁ·¹ý³ÌËðʧº¯Êýmin ¡Æ ( h , r , t ) ¡Ê ¦¤ ( h ¡ä , r ¡ä , t ¡ä ) ¡Ê ¦¤ ¡ä [ f r ( h , t ) + ¦Ã − f r ¡ä ( h ¡ä , t ¡ä ) ] + + ¦Ë ( ¡Æ r ¡Ê R ¡Î W r ¡Î F 2 ) + C ( ¡Æ e ¡Ê E ¡Î e ¡Î 2 2 + ¡Æ r ¡Ê R ¡Î r ¡Î 2 2 ) s.t. [ W r ] i j ¡Ý 0 min s.t. (h,r,t)¡Ê¦¤(h¡ä,r¡ä,t¡ä)¡Ê¦¤¡ä¡Æ[fr(h,t)+¦Ã−fr¡ä(h¡ä,t¡ä)]++¦Ë(r¡ÊR¡Æ¡ÎWr¡ÎF2)+C(e¡ÊE¡Æ¡Îe¡Î22+r¡ÊR¡Æ¡Îr¡Î22)[Wr]ij¡Ý0 KG2E Learning to Represent Knowledge Graphs with Gaussian Embedding(2015)×÷ÕßÖ¸³öTransE¡¢TransRµÈ֮ǰµÄÑо¿£¬ÔÚ·ÖÀëÕýÈýÔª×é¼°Æä¶ÔÓ¦µÄ¸ºÈýÔª×éʱ£¬²»Í¬µÄʵÌåºÍ¹ØÏµÍùÍù¹²ÏíÏàͬµÄ±ß½ç£¬¶øÖªÊ¶¿âÖÐʵÌåºÍ¹ØÏµµÄ**£¨·Ç£©È·¶¨ÐÔ**±»ÍêÈ«ºöÂÔ¡£µ«Êµ¼ÊÉÏ£¬²»Í¬µÄʵÌåºÍ¹ØÏµ³£³£°üº¬²»Í¬µÄÈ·¶¨ÐÔ¡£ÔÚÕâÀһ¸öʵÌå/¹ØÏµµÄ£¨·Ç£©È·¶¨ÐÔ±íʾÔÚ½«Ò»¸öÈýÔª×é×÷ΪÉÏÏÂÎÄÆÀ·Öʱ±íʾÆäÓïÒåµÄ¿ÉÐŶȡ£¾Ù¸öÀõ×Ó£¬ÔÚÍÆ¶ÏÒ»¸öÈËʱ£¬Åäż¹ØÏµµÄÈ·¶¨ÐÔÃ÷ÏÔ´óÓÚ¹ú¼®¡£ÔÚÔ¤²âHillary Clintonʱ£¬µ±ÎÒÃÇÖªµÀËýÕÉ·ò£¨Åäż£©ÊÇBill Clintonʱ£¬ÎÒÃÇ¿ÉÄܸüÓÐÐÅÐÄÖªµÀËýÊÇË£¬¶ø²»ÊÇÖªµÀËý³öÉúÔÚ£¨¹ú¼®£©ÃÀ¹ú¡£ Ϊ´Ë£¬±¾ÎÄʹÓÃGaussian Distribution À´±íʾʵÌåºÍ¹ØÏµ£¬Ê¹ÓÃз½²îÀ´±íʾʵÌåºÍ¹ØÏµµÄ²»È·¶¨¶È¡£ÏàͬÑÕÉ«µÄԲȦ´ú±íͬÒâÈýÔª×飬ԲȦ´óСÔò±íʾ²»Í¬ÈýÔª×éµÄ²»È·¶¨¶È¡£
Ïà¶ÔÓÚ֮ǰµÄpoint-based model£¬±¾ÎĵÄKG2EÊÇÒ»ÖÖdensity-based model¡£ÔÚ½¨Ä£¹ý³ÌÖÐÇ¿µ÷ÁË(un)certaintyµÄ¸ÅÄÈÚÈë¹ØÏµºÍʵÌåÓïÒå±¾ÉíµÄ²»È·¶¨ÐÔ²¢Ê¹Óøß˹·Ö²¼Ð·½²î±íʾʵÌå¹ØÏµµÄ²»È·¶¨¶È£¬Ê¹Óøß˹·Ö²¼µÄ¾ùÖµ±íʾʵÌå»ò¹ØÏµÔÚÓïÒå¿Õ¼äÖеÄÖÐÐÄÖµ¡£µ«ÊÇKG2EÔÚlink predictionÈÎÎñÖеĶà¶Ô¶à¹ØÏµÉϱíÏÖ²»ÊǺܺã¬Ö÷ÒªÔÒòÊÇÄ£ÐÍûÓп¼ÂÇʵÌåºÍ¹ØÏµµÄÀàÐͺÍÁ£¶È¡£ TransG TransG : A Generative Model for Knowledge Graph Embedding(2016)±¾ÎÄÖ÷ÒªÊÇΪÁ˽â¾ö¶à¹ØÏµÓïÒ壨multiple relation semantics£©£¬¼´Ä³Ò»ÖÖ¹ØÏµ¿ÉÄÜ»á´æÔÚ¶à¸öÀà±ðµÄÓïÒ壬±ÈÈç¶ÔÓÚ(Atlantics, HasPart, NewYorkBay)ºÍ(Table, HasPart, Leg)Á½¸öÈýÔª×é¶¼ÊôÓÚ¹ØÏµHasPart£¬µ«ÊÇËûÃÇÔÚÓïÒåÉϲ¢²»Ïàͬ£¬Ò»¸öÊÇλÖõÄÓïÒ壬һ¸öÊDz¿¼þµÄÓïÒå¡£ÆäʵÕâ¸öÎÊÌâÔÚ֮ǰ½éÉܵÄCTransRÖÐÒ²Ìá³ö¹ý½â¾ö·½°¸£¬µ«ÊÇ×÷ÕßËÆºõÈÏΪCTransRÔ¤´¦Àí¾ÛÀàµÄ²Ù×÷²»ÊǺÜelegant¡£
Ϊ´Ë£¬×÷ÕßÃÇÌá³öÁËÒ»ÖÖ»ùÓÚ±´Ò¶Ë¹·Ç²ÎµÄÎÞÏÞ»ìºÍǶÈëÄ£ÐÍ£ºÈÏΪ¹ØÏµÏòÁ¿ÓÉÈô¸É×ӳɷÖÏòÁ¿ºÏ³É£¬Ä£ÐÍ»á¸ù¾ÝʵÌå¶Ô×Ô¶¯Ñ¡ÔñÒ»¸ö¹ØÏµÏòÁ¿£¬¶ø¶àÉÙ¸öÕâÑùµÄ¹ØÏµÏòÁ¿»¹¿ÉÒÔÓÉÄ£ÐÍ×Ô¶¯Ñ¡Ôñ¡£ ÕûÌå¹ý³ÌÈçÏ£º
Ò»ÕÅ×ܽá
ÒÔÉÏ2019.10.08 |