在研究人员的实验中,语义细化的边缘对齐学习(steal)能够将最先进的casenet语义边界预测模型的精度提升4%。更精确地识别物体的边界可以使用于计算机视觉任务,从图像生成到三维重建到物体检测。 STEAL可用于改进现有的CNNs或边界检测模型,但研究人员还认为它可以帮助他们更有效地标记或注释计算机视觉模型的数据。为证明这一点,STEAL方式用于改进城市景观,这是2016年首次在计算机视觉和模式识别(CVPR)会议上引入的城市环境数据集。 据arXiv报道,研究者在4月发表的一篇论文中说:“我们进一步表明,我们预测的边界比最新的DeepLab-v3分割输出得到的边界显著更好,同时运用了更轻量级的架构。”并在6月9日进行了修订。 “魔鬼就在边缘:从嘈杂的注释中学习语义边界”将在本周于加州长滩举行的CVPR 2019年会议上分享。英伟达在今天的一篇博客文章中说,近12篇部分由英伟达研究公司撰写的研究论文将在会议上以口头陈述的形式分享。 |